• Title/Summary/Keyword: Optimal Transducer

Search Result 116, Processing Time 0.023 seconds

The Active Noise Control in Harmonic Enclosed Sound Fields (I) Computer Simulation (조화가진된 밀폐계 음장에서의 능동소음제어 (I) 컴퓨터 시물레이션)

  • Oh, Jae-Eung;Lee, Tae-Yeon;Kim, Heung-Seob;Shin, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1054-1065
    • /
    • 1993
  • A computer simulation is performed on the effectiveness of the active minimization of harmonically excited enclosed sound fields for producing global reduction in the amplitude of the pressure fluctuations. In this study for the appreciable reductions in total time averaged acoustic potential energy, $E_{pp}$, the transducer location strategies for three dimensional active noise control is presented based on a state space modal which approximates the closed acoustic field.In this study, the above theoretical basis is used to investigate the application of active control to sound fields of low modal density. By the used of room-like 3-dimensional rectangular enclosure it is demonstrated that the reductions in $E_{pp}$ can be achieved by using a single secondary source, provided that the source is placed within the half a wavelength from the primary source and placed away from nodal line of the sound field. Concerning the reductions in $E_{pp}$ by minimzing the pressure in sound fields by the use of 3-dimensional rectangular enclosure, the effects of the number of sensors and the locations of these sensors are investigated. When a few modes dominate the response it is found that if only a limited number of sensors are located away from nodal line and located at the pressure maxima of the sound field such as at each corner of a rectangular enclosure.

Effects of Intermittent Sciatic Nerve Stimulation on the Soleus and Medial Gastrocnemius Muscle Atrophy in Hindlimb Suspended Rats

  • Park, Byung-Rim;Cho, Jung-Shick;Kim, Min-Sun;Chun, Sang-Woo
    • The Korean Journal of Physiology
    • /
    • v.26 no.2
    • /
    • pp.159-166
    • /
    • 1992
  • The present study was designed to evaluate effects of intermittent electrical stimulation of the sciatic nerve on the atrophic response of antigravity muscles, such as the soleus (slow m.) and medial gastrocnemius (fast m.) muscles. Rats (Sprague-Dawley, 245-255g) were subjected to a hindlimb suspension and divided into three groups : one was with hindlimb suspension (MS) and another with hindlimb suspension plus intermittent electrical stimulation of the sciatic nerve (HS ES). Control group (CONT) was kept free without strain of the hindlimb. After 7 days of hindlimb suspension, the soleus and medial gastrocnemius muscles were cut at their insertion sites, and were then connected to the force transducer to observe their mechanical properties. Optimal pulse width and frequency of electrical stimulation were 0.2ms, 20Hz for the soleus muscle and 0.3ms, 40Hz for the medial gastrocnemius muscle under supramaximal stimulation. Body weight and circumference of the hindlimb were significantly decreased in HS and HS-ES groups compared with the control group. In HS-ES group, however, the weight of the soleus muscle was not different from that in the control group while the weight of the medial gastrocnemius muscle was lower than that in the control group. In HS group, mechanical properties of muscle contraction including contraction time, half relaxation time, twitch tension, tetanic tension, and fatigue index of both muscles were significantly decreased compared with the control group except for twitch tension and tetanic tension of medial gastrocnemius muscle. The degree of atrophy of the soleus muscle in HS group was more prominent than that of the medial gastrocnemius muscle. Twitch tension and fatigue index of the soleus muscle and fatigue index of the medial gastrocnemius muscle in HS-ES group were not different from those of the control group. While mechanical properties of the soleus muscle examined were all significantly increased in HS-ES group compared with HS group, only contraction time and fatigue index of the medial gastrocnemius muscle were significantly increased in HS-ES group. These data indicate that intermittent electrical stimulation may be useful in prevention of muscle atrophy.

  • PDF

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.

Estimation of Rockbolt Integrity by Using Non-Destructive Testing Techniques(I) -Numerical and Experimental of Applicability- (비파괴 시험기법을 이용한 록볼트의 건전도 평가(I) -수치해석 및 실험적 적용성 평가-)

  • Lee, Jong-Sub;Lee, Yong-Jun;Eom, Tae-Won;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.3-12
    • /
    • 2006
  • The purpose of this study is to describe the Non-Destructive Testing(NDT) of the rockbolt and investigate the applicability of the NDT methods to estimate the integrity of the rockbolt. To examine the rockbolt integrity including rockbolt itself and grouting material, two methods are adopted: numerical and experimental methods. In the numerical method, the numerical code DISPERSE is used to analyze the dispersion of the rockbolt. The dispersion curve shows the effects of the thickness and stiffness of grouted materials on the embedded rockbolt. Therefore, the optimal frequency for the integrity test of the rockbolt is obtained: 20~120kHz in L(1,0) mode. In the experimental methods, destructive and non-destructive tests are carried out in a laboratory. In the non-destructive test, the low frequency mode generated by an impact and t he high frequency mode generated by an ultrasonic transducer seem to characterize the rockbolt condition readily. The experimental results show that the guided waves attenuate more significantly when the stiffness of the grouted material increases and/or the zone of the defect increases. Meanwhile, the ultimate capacity of rockbolt was evaluated through the pull-out tests and is compared to the NDT results. This study demonstrates that the NDT is a valuable tool for the rockbolt integrity evaluation.

  • PDF

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.