• Title/Summary/Keyword: Optimal Tool Path

Search Result 99, Processing Time 0.033 seconds

Optimization for Arrayed Waveguide Grating having MMI Coupler for Flattened Transfer Function

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.169-173
    • /
    • 2006
  • This paper describes an efficient optimal design method for an arrayed waveguide grating (AWG) having MMI coupler with flattened transfer function. The objective function is the norm of the difference between calculated and target spectra. To analyze the AWG transfer function, the Fresnel-Kirchhof diffraction formula was employed and the design variable was optical path difference of each array waveguide. The (1+1) Evolution Strategy was applied to an eight-channel coarse wavelength division multiplexing (CWDM) AWG as the optimization tool. For obtaining a broadened spectrum, we use a MMI coupler and the variation in optical path difference at each array waveguide changes the shape of the transfer function to obtain the optimal spectrum shape.

Study of integrated control system for factory automation (공장자동화를 위한 통합제어시스템에 관한 연구)

  • 최경현;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1245-1248
    • /
    • 1996
  • This paper describes a cell programming environment that deals with problems associated with programming Flexible Manufacturing Cells(FMCs). The environment consists of the cell programming editor and the automatic generation module. In the cell programming editor, cell programmers can develop cell programs using task level description set which supports task-oriented specifications for manipulation cell activities. This approach to cell programming reduces the amount of details that cell programmers need to consider and allows them to concentrate on the most important aspects of the task at hand. The automatic generation module is used to transform task specifications into executable programs used by cell constituents. This module is based on efficient algorithm and expert systems which can be used for optimal path planning of robot operations and optimal machining parameters of machine tool operations. The development tool in designing the environment is an object-oriented approach which provides a simple to use and intuitive user interface, and allows for an easy development of object models associated with the environment.

  • PDF

Optimal Cutting Condition of Rough Cutting Using Trochoidal Motion (Trochoidal 방식을 이용한 황삭가공의 최적조건)

  • Bong, Ha Yoon;Kim, Moon Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • In modern industry, the machining process is very important for manufacturing various products. More than 80% of machining processes apply rough cutting. The target of this study is to establish the optimal condition of rough cutting using trochoidal motion for improving productivity. For research, the range of cutting conditions is defined by trochoidal motion. The cutting time and tolerance are measured and evaluated according to the cutting conditions of machining. Experimental data are utilized for comparing trochoidal motion and contouring. It is found that the cutting time of trochoidal motion is two times less than that of contouring with optimal cutting conditions. To conclude, trochoidal motion for rough cutting under appropriate cutting conditions improves productivity and shortens processing time significantly.

Health Monitoring of Steel Plates Using Lamb Waves and Support Vector Machines (Lamb파와 SVM을 이용한 강구조물의 건전성 감시기법)

  • Park, Seung-Hee;Yun, Chung-Bang;Roh, Yong-Rae
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.331-342
    • /
    • 2005
  • This paper presents a non-destructive evaluation (NDE) technique for detecting damages on a jointed steel plate on the basis of the time of flight and wavelet coefficient, obtained from wavelet transforms of Lamb wave signals. Support vector machines (SVMs), which is a tool for pattern classification problems, was applied to the damage estimation. Two kinds of damages were artificially introduced by loosening bolts located in the path of the Lamb waves and those out of the path. The damage cases were used for the establishment of the optimal decision boundaries which divide each damage class's region from the intact class. In this study, the applicability of the SVMs was investigated for the damages in and out of the Lamb wave path. It has been found that the present methods are very efficient in detecting the damages simulated by loose bolts on the jointed steel plate.

  • PDF

A Genetic Algorithm Based Learning Path Optimization for Music Education (유전 알고리즘 기반의 음악 교육 학습 경로 최적화)

  • Jung, Woosung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • For customized education, it is essential to search the learning path for the learner. The genetic algorithm makes it possible to find optimal solutions within a practical time when they are difficult to be obtained with deterministic approaches because of the problem's very large search space. In this research, based on genetic algorithm, the learning paths to learn 200 chords in 27 music sheets were optimized to maximize the learning effect by balancing and minimizing learner's burden and learning size for each step in the learning paths. Although the permutation size of the possible learning path for 27 learning contents is more than $10^{28}$, the optimal solution could be obtained within 20 minutes in average by an implemented tool in this research. Experimental results showed that genetic algorithm can be effectively used to design complex learning path for customized education with various purposes. The proposed method is expected to be applied in other educational domains as well.

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 및 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim P.;Park S.Y.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.993-996
    • /
    • 2005
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, which has many advantages such as good quality, low cost and rapid machining time. but it also has problems like tool break, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is effected by the milling conditions whose evaluated parameters are spindle, feedrate, and width of cut. The experiments are carried out by full factorial design of experiments using and orthogonal array. This paper shows optimal combination and mathematical model for tool life, and the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

  • PDF

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim, Pyo;Park, Sang-Yoon;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.73-80
    • /
    • 2006
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, because it has many advantages such as good quality, low cost and rapid machining time. But it also has problems such as tool breakage, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is affected by the milling conditions whose selected parameters are spindle speed, feedrate, and width of cut. The experiments were carried out by full factorial design of experiments using an orthogonal array. This paper shows optimal combination and mathematical model for tool life, Therefore, the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

Determination of Tool Orientation in 5-Axis Milling Using Potential Energy Method (포텐셜 에너지를 이용한 5축 NC 밀링의 공구방향 결정)

  • Cho, Inhaeng;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.161-167
    • /
    • 1996
  • In five-axis milling, optimal CL-data (cutter location data) should be generated to have advantages over three-axis milling in terms of accuracy and efficiency. This paper presents an algorithm for generating collision-free CL-data for five-axis milling using potential energy method. By virtually charging the cutter and part surfaces with static electricity, global collision as wells as local interference is eliminated. Additionally, machining efficiency is improved by minimizing the curvature difference between the part surface and tool swept surface at a CC-point (cutter contact point) simultaneously.

  • PDF

Development of a CAM Software for Hole Machining of Dies (금형의 구멍가공을 위한 CAM 소프트웨어 개발)

  • Ju, Sang-Yoon;Lee, Sang-Heon
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • There are many types of holes to be machined on dies manufactured in the car industry. In this paper we introduce a CAM software developed for hole machining of press dies. The CAM software automatically generates NC files for machining holes from CAD data modeled in the CATIA system. A procedure generating NC files consists of three steps. First, the geometric information such as types of holes, hole positions, hole diameters, and hole depths is extracted from CATIA models. And then tools to be used and operation orders are standardized to establish a data base. Finally, NC files are generated by considering the machining conditions such as feedrate and rpm. It is efficient that holes with the same type and the same size should be grouped and machined by a tool to reduce the tool change time. The optimal tool path for machining the holes in a group can be determined by applying an algorithm solving the traveling salesman problem.

  • PDF

High Speed Machining Considering Efficient Manual Finishing Part II: Optimal Manual Finishing Process and Machining Condition (고속 가공을 이용한 금형의 효율적 생산 제 2 부: 사상 공정 및 가공 조건의 선정)

  • Kim, Min-Tae;Je, Sung-Uk;Lee, Hae-Sung;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.38-45
    • /
    • 2006
  • In this work, optimal finish machining condition considering total time for mold or electrode manufacturing was investigated. First, manual finishing time according to the machining condition was analyzed for the work material. The effect of runout and phase shift of tool path on surface finish was also considered in those analyses. Secondly, optimal manual finishing processes were determined for various machining conditions. Finally, finish machining time and corresponding manual finishing time were taken into account for the estimation of the total time of manufacturing mold. Though small feed per tooth and pick feed reduced the manual finishing time, the finish machining time increased in such conditions. With a machining condition of feed per tooth of 0.2 mm and pick feed of 0.3 mm, the minimum total time of manufacturing mold was achieved in our machining condition.