• Title/Summary/Keyword: Optimal Technique

Search Result 3,174, Processing Time 0.032 seconds

Intermediate Image Generation based on Disparity Path Search in Block of Disparity Space Image (시차공간영상에서의 구간별 시차 경로 탐색을 이용한 중간 영상 생성)

  • Kwak, Ji-Hyun;Kim, Kyung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.9-16
    • /
    • 2008
  • In this paper, we present an algorithm for synthesizing intermediate view image from a stereoscopic pair of images. An image of multiview is need for people in order to easily recognize 3D image. However, if many cameras are use for that, not only does system get more complicated but also transmission rating cause a big trouble. Hence, stereo images are photograph and issue on the sending side and algorithm to generate several intermediate view image is able to be use on the receiving side. The proposed method is based on disparity space image. First of all, disparity space image that is depicted by the gap of pixel followed by disparity of stereo image is generated. Disparity map is made by utilizing disparity space image for searching for optimal disparity path then eventual intermediate view image is generated after occlusion region which does not match is processed. Experimental results illustrate the performance of the proposed technique and we obtained a high quality image of more than 30 dB PSNR.

Assessments of Physical Workload in Sonography Tasks Using Inclinometry, Goniometry, and Electromyography

  • Simonsen, Jenny Gremark;Dahlqvist, Camilla;Enquist, Henrik;Nordander, Catarina;Axmon, Anna;Arvidsson, Inger
    • Safety and Health at Work
    • /
    • v.9 no.3
    • /
    • pp.326-333
    • /
    • 2018
  • Background: Echocardiography involves strenuous postures of the upper limbs. This study explored the physical workload in the neck and upper limbs in sonographers performing echocardiography, and the extent to which the workload differs from than in other work tasks (other sonographic examinations, and nonsonographic tasks). Methods: The physical load was assessed by inclinometry, goniometry, and electromyography methods in 33 female sonographers during authentic work using three different echocardiography techniques and other work tasks. Results: Echocardiography was characterized by low velocities of the head, arms, and wrists, and a low proportion of muscular resting time in the forearms, in the transducer limb, and the computer limb. The transducer limb was more elevated in one of the techniques, but this technique also involved a higher proportion of muscular resting time of the trapezius muscle. We also found a high proportion of awkward wrist postures in the transducer wrist in all three techniques; in one due to prolonged flexion, and in the others due to prolonged extension. Other work tasks were less static, and were performed with higher upper arm and wrist velocities. Conclusion: None of the three echocardiography techniques was optimal concerning physical workload. Thus, to achieve more variation in physical load we recommend that the equipment be arranged so that the sonographer can alternate between two different techniques during the workday. We also propose alternation between echocardiography and nonsonographic tasks, in order to introduce variation in the physical workload. Clinical expertise should be used to achieve further improvements.

Removal of Arsenic in Synthesis Method and Characteristics of Fe(III)-ettringite (비소제거를 위한 Fe(III)-ettringite 합성방법 및 특성 연구)

  • Hong, Seong-Hyeok;Park, Hye-Min;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings, because of it's carcinogenic property, the countries like United states of America and Europe have made stringent regulations which govern the concentration of arsenic in drinking water. The current study focuses on different treatment methods for removal of arsenic from waste water. Treatment method the high strength arsenic waste water is treated with Fe(III)-ettringite by co-precipitation method. Number of experiments were carried out to decide the optimal dosage of Fe(III)-ettringite to treat arsenic waste water. The Fe(III)-ettringite was synthesized by taking appropriate equivalent ratios of calcium oxide and ferric chloride in proportion to the arsenic. The best removal efficiencies of 94% were observed at a As/(Ca: Fe) ratio of 1:3. The maximum removal of arsenic was observed in pH range of 12. But as the pH increases the arsenic removal efficiency decreases as portlandite is formed in the pH above 12. The analysis of surface of precipitate conform the needle like structure of ettringite. This treatment technique has promising features such as, the chemicals required in the treatment as well as the sludge generated can be reduced. The operating pH range is in alkaline region which is advantageous over traditional treatment process which has lower pH. Also the co-precipitation not only helps in removal of arsenic but also heavy metals.

Current Status of High Dose Rate Brachytherapy in Cervical Cancer in Korea and Optimal Treatment Schedule (자궁 경부암 고선량율 강내조사 치료의 국내 현황과 적정 치료방법)

  • Huh, Seung-Jae
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.357-366
    • /
    • 1998
  • Brachytherapy is an essential part of radiotherapy for uterine cervical cancer. The low dose rate (LDR) regimen has been the major technique of intracavitary therapy for cervical cancer. However, there has been an expansion in the last 20 years of high dose rate (HDR) machines using Ir-192 sources. Since 1979, HDR brachytherapy has been used for the treatment of uterine cervical cancer in Korea. The number of institutions employing HDR has been increasing, while the number of low dose rate system has been constant. In 1995, there was a total 27 HDR brachytherapy units installed and 1258 cases of patients with cervical cancer were treated with HDR Most common regimens of HDR brachytherapy are total dose of 30-39 Gy at point A with 10-13 fractions in three fractions per week. 24-32 Gy with 6-8 fractions in two fractions per week, and 30-35 Gy with 6-7 fractions in two fractions per week. The average fractionation regimen of HDR brachytherapy is about 8 fractions of 4.1 Gy each to Point A. In Korea, treatment results for HDR brachytherapy are comparable with the LDR series and appears to be a safe and effective alternative to LDR therapy for the treatment of cervical carcinoma. Studies from the major centers report the five-year survival rate of cervical cancer as. 78-86$\%$ for Stage 1, 68-85$\%$ for stage 11, and 38-56$\%$ for Stage III. World-wide questionnaire study and Japanese questionnaire survey of multiple institutions showed no survival difference in any stages and dose-rate effect ratio (HDR/LDR) was calculated to be 0.54 to 0.58. However the optimum treatment doses and fractionation schemes appropriate to generate clinical results comparable to conventional LDR schemes have yet to be standardized. In conclusion, HDR intracavitary radiotherapy is increasingly practiced in Korea and an effective treatment modality for cervical cancer. To determine the optimum radiotherapy dose and fractionation schedule, a nation-wide prospective study is necessary in Korea. In addition, standardization of HDR application (clinical, computer algorithms, and dosimetric aspects) is necessary.

  • PDF

A Study on the Performance Evaluation of a Voice Coil Actuator for Electro-Discharge Micro-Drilling Machine (보이스코일 액츄에이터로 이송되는 미세구멍 가공용 방전 가공기의 작동특성 연구)

  • Yang, Seung-Jin;Baek, Hyeong-Chang;Kim, Byeong-Hui;Jang, In-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.152-158
    • /
    • 2001
  • In this paper, we have developed an electro discharge machine for micro drilling driven by a voice coil actuator. Because the voltage signal of the electro-discharging circuit shows a lot of peaks and valleys, the active type low-pass filtering technique is adopted to get the average of the signal. Since the motion of the voice coil is precisely controlled by the error value between the object voltage value and the measured one, it is possible to prevent the mechanical contact between the rotating electrode and the workpiece and to maintain the appropriate machining conditions during the process. The electro-chemical machining technology was also adopted to make small diameter electrodes. Pure water is used as a dielectric. The machining procedure is performed to verify the feasibility of the developed system. It takes about 10 seconds to drill the ${\phi}m$100${\mu}m$ hole to the 100${\mu}m$ thickness stainless steel plate. The machining time depends on the values of the resister and the capacitor. There may exist the optimal values of time constant and the tendency is displayed In the appendix.

  • PDF

Nanoaperture Design in Visible Frequency Range Using Genetic Algorithm and ON/OFF Method Based Topology Optimization Scheme (유전알고리즘 및 ON/OFF 방법을 이용한 가시광선 영역의 나노개구 형상의 위상최적설계)

  • Shin, Hyun Do;Yoo, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1513-1519
    • /
    • 2013
  • A genetic algorithm (GA) is an optimization technique based on natural evolution theory to find the global optimal solution. Unlike the gradient-based method, it can design nanoscale structures in the electric field because it does not require sensitivity calculation. This research intends to design a nanoaperture with an unprecedented shape by the topology optimization scheme based on the GA and ON/OFF method in the visible frequency range. This research mainly aims to maximize the transmission rate at a measuring area located 10nm under the exit plane and to minimize the electric distribution at other locations. The finite element analysis (FEA) and optimization process are performed by using the commercial package COMSOL combined with the Matlab programming. The final results of the optimized model are analyzed by a comparison of the electric field intensity and the spot size of near field with those of the initial model.

Development of a High-Resolution Electrocardiography for the Detection of Late Potentials (Late Potential의 검출을 위한 고해상도 심전계의 개발)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.449-458
    • /
    • 1996
  • Most of the conventional electrocardiowaphs foil to detect signals other than P-QRS-T due to the limited SNR and bandwidth. High-resolution electrocardiography(HRECG) provides better SNR and wider bandwidth for the detection of micro-potentials with higher frequency components such as vontricular late potentials(LP). We have developed a HRECG using uncorrected XYZ lead for the detection of LPs. The overall gain of the amplifier is 4000 and the bandwidth is 0.5-300Hz without using 60Hz notch filter. Three 16-bit A/D converters sample X, Y, and Z signals simultaneously with a sampling frequency of 2000Hz. Sampled data are transmitted to a PC via a DMA-controlled, optically-coupled serial communication channel. In order to further reduce the noise, we implemented a signal averaging algorithm that averaged many instances of aligned beats. The beat alignment was carried out through the use of a template matching technique that finds a location maximizing cross-correlation with a given beat tem- plate. Beat alignment error was reduced to $\pm$0.25ms. FIR high-pass filter with cut-off frequency of 40Hz was applied to remove the low frequency components of the averaged X, Y, and Z signals. QRS onset and end point were determined from the vector magnitude of the sigrlaIL and some parameters needed to detect the existence of LP were estimated. The entire system was designed for the easy application of the future research topics including the optimal lead system, filter design, new parameter extraction, etc. In the developed HRECG, without signal averaging, the noise level was less than 5$\mu$V$_rms RTI$. With signal averaging of at least 100 beats, the noise level was reduced to 0.5$\mu$V$_rms RTI$, which is low enough to detect LPs. The developed HRECG will provide a new advanced functionality to interpretive ECG analyzers.

  • PDF

A Development of Wireless Sensor Networks for Collaborative Sensor Fusion Based Speaker Gender Classification (협동 센서 융합 기반 화자 성별 분류를 위한 무선 센서네트워크 개발)

  • Kwon, Ho-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.113-118
    • /
    • 2011
  • In this paper, we develop a speaker gender classification technique using collaborative sensor fusion for use in a wireless sensor network. The distributed sensor nodes remove the unwanted input data using the BER(Band Energy Ration) based voice activity detection, process only the relevant data, and transmit the hard labeled decisions to the fusion center where a global decision fusion is carried out. This takes advantages of power consumption and network resource management. The Bayesian sensor fusion and the global weighting decision fusion methods are proposed to achieve the gender classification. As the number of the sensor nodes varies, the Bayesian sensor fusion yields the best classification accuracy using the optimal operating points of the ROC(Receiver Operating Characteristic) curves_ For the weights used in the global decision fusion, the BER and MCL(Mutual Confidence Level) are employed to effectively combined at the fusion center. The simulation results show that as the number of the sensor nodes increases, the classification accuracy was even more improved in the low SNR(Signal to Noise Ration) condition.

The Use of MR Perfusion Imaging in the Evaluation of Tumor Progression in Gliomas

  • Snelling, Brian;Shah, Ashish H.;Buttrick, Simon;Benveniste, Ronald
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • Objective : Diagnosing tumor progression and pseudoprogression remains challenging for many clinicians. Accurate recognition of these findings remains paramount given necessity of prompt treatment. However, no consensus has been reached on the optimal technique to discriminate tumor progression. We sought to investigate the role of magnetic resonance perfusion (MRP) to evaluate tumor progression in glioma patients. Methods : An institutional retrospective review of glioma patients undergoing MRP with concurrent clinical follow up visit was performed. MRP was evaluated in its ability to predict tumor progression, defined clinically or radiographically, at concurrent clinical visit and at follow up visit. The data was then analyzed based on glioma grade and subtype. Resusts : A total of 337 scans and associated clinical visits were reviewed from 64 patients. Sensitivity, specificity, positive and negative predictive value were reported for each tumor subtype and grade. The sensitivity and specificity for high-grade glioma were 60.8% and 87.8% respectively, compared to low-grade glioma which were 85.7% and 89.0% respectively. The value of MRP to assess future tumor progression within 90 days was 46.9% (sensitivity) and 85.0% (specificity). Conclusion : Based on our retrospective review, we concluded that adjunct imaging modalities such as MRP are necessary to help diagnose clinical disease progression. However, there is no clear role for stand-alone surveillance MRP imaging in glioma patients especially to predict future tumor progression. It is best used as an adjunctive measure in patients in whom progression is suspected either clinically or radiographically.

Optimal EEG Channel Selection using BPSO with Channel Impact Factor (Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • Brain-computer interface based on motor imagery is a system that transforms a subject's intention into a control signal by classifying EEG signals obtained from the imagination of movement of a subject's limbs. For the new paradigm, we do not know which positions are activated or not. A simple approach is to use as many channels as possible. The problem is that using many channels causes other problems. When applying a common spatial pattern (CSP), which is an EEG extraction method, many channels cause an overfit problem, in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest a binary particle swarm optimization with channel impact factor in order to select channels close to the most important channels as channel selection method. This paper examines whether or not channel impact factor can improve accuracy by Support Vector Machine(SVM).