• Title/Summary/Keyword: Optimal Strength Ratio

Search Result 320, Processing Time 0.027 seconds

Surface Treatment of Aluminum/ Fiber- Reinforced Composites As Energy-Saving Light Structures (에너지 구조재 적용을 위한 알루미늄/섬유강화 복합재의 표면처리)

  • 이경엽;강용태;양준호
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.1
    • /
    • pp.56-61
    • /
    • 2001
  • In this work, the surface treatment of aluminum/composites (graphite-epoxy composites) was investigated. The surface of composites was treated by $Ar^{+}$ ion beam under oxygen environment. The surface of aluminum was treated by DC plasma. The optimal condition of surface treatment for the composites was determined by measuring the contact angle as a function of ion dose. The optimal treatment condition of the aluminum was determined by measuring the contact angle and T-peel strength as a function of mixture ratio of acetylene gas to nitrogen gas. The mixture ratios used were 1:9, 3:7, 5:5, 7:3, and 9:1. The results showed that the contact angle of composites decreased from$ 81^{\circ}$ to $8^{\circ}$ as the ion dose increased from zero to $1$\times$10^{17}$ions/$\textrm{cm}^2$. The optimal condition of ion dose was $1$\times$10^{16}$ions/$\textrm{cm}^2$. The results also showed that the contact angle of aluminum was a minimum for the mixture ratio of 5:5. Similarly, the T-peel strength was a maximum for the mixture ratio of 5:5, which indicates that the optimal condition of mixture ratio of acetylene gas to nitrogen gas is 5:5.

  • PDF

Fundamental Characteristics of High Strength SCMs Concrete According to Mixing Ratio of FA and BS (FA 및 BS의 혼합비율 변화에 따른 3성분계 고강도 콘크리트의 기초적 특성)

  • Kim, Min-Sang;Moon, Byeong-Yong;Lee, Jae-Jin;Park, Sung-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.154-155
    • /
    • 2017
  • With the recent development in construction industry, industrial by-products fly ash(FA) and blast furnace slag(BS) have been used in large quantities as an alternative to cement, as a solution for environmental problems and resource exhaustion. This study analyzed the basic characteristics according to the changes in replacement ratio and mixing ratio of FA and BS in high strength SCMs concrete, from which in turn it sought to find the optimal mixing ratio for high strength concrete The results showed that in unhardened concrete the more the replacement ratio and FA mixing ratio increases the slump flow will increase while amount of air decreases, and setting time is delayed. In hardened concrete the more the replacement ratio and FA mixing ratio increases the more the overall compression strength decreases, but until 28 days of material age the larger of the BS ratio displayed the best compression strength.

  • PDF

The Characteristics of Mortar According to the Water Cement Ratio and Mudflats Replacement Ratio (물-시멘트비 및 갯벌 치환율에 따른 모르타르의 특성)

  • Yang, Seong-Hwan;Lee, Heung-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This research analyzes the properties of mortar following the rise in water-cement ratio and applicability as an eco-friendly construction supply by using the mudflats of a dredged arena as a substitute for aggregate. The results of a experiment of the flow showed that the flow value decreases as the amount of mudflats increases. A test for chloride content showed that the chloride content increases with the amount of mudflats. In the compression of specimen mixed with mudflat and the testing of tensile strength, the strength weakened as the addition ratio of mudflats rose. However, with 14-day strength as the standard, most specimen showed more strength than the plain, and 14-day strength was higher than 28-day strength. It appears to be experimental error in the mixing process from the viscosity and cohesion of mudflats, and it is considered that there will be a need for an experiment on mixing methods of mudflats in the future. The compressive strength of this research was the strongest with 70% in water-cement ratio, and the tensile strength was strongest with 80% in water-cement ratio. In the evaluation of surface analysis, 70% water-cement ratio, which is finest in strength, mixing, and compactness, was selected to analyze the roughness of the surface, and the results showed that the surface became smoother as the addition ratio of mudflats increases. In conclusion, it appears that 70% water-cement ratio is the optimal mixing ratio for mortar and 10 to 30% addition ratio of mudflats the optimal ratio. It also appears that the application of interior finishing material like bricks and tiles and interior plastering material using the mudflats are possible.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.

Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber (강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • Recently, as large constructions on the coast increase, an application of a surface layer stabilization method which is one of the improvement methods for dredged soft clay has increased. However, there are few studies about this. The purpose of this study is clarifying characteristics of ultra-soft marine clay and hardening agent. Also, it is verifying an optimal mixture ratio of hardening agent through the laboratory tests according to designed experiments and proving by statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil in accordance with the design of experiments. Regression equations between hardening agents materials and unconfined compressive strength were derived from the tests. The applicability of regression equations were also verified by pilot tests. From the test results, it was found that hardening agent materials(cement, slag, fly-ash, inorganic salts, arwin, gypsum etc.) have some effect upon compressive strength. The optimal mixture ratio which satisfies the required compressive strength was derived from the statistical analysis. The effect of ground improvement by cements and hardening agents was confirmed through the pilot tests. This study will suggest data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

Study on the Optimal Design for Design Parameter of Planetary Gear Train Using Simulated Annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 설계요소 최적화에 관한 연구)

  • Lee Geun Ho;Choi Young Hyuk;Chong Tae Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on miniaturization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study f3r the planetary gear train required long life estimation. In this work being considered life, strength, interference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algerian for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used far optimal design method.

Composition of Optimal Nutrient Solution for Single-stemmed Rose 'Red velvet' in a Closed Aeroponic System

  • Kang Mu Jang;Lee Joo Hyun;Lee Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.174-181
    • /
    • 2005
  • Experiments were carried out to develop an optimal nutrient solution for the single-stemmed rose (Rosa hybrida L.) 'Red velvet' in a closed aeroponic system. Plants were grown in 1/3, 1/2, 1, or 3/2 strength of the nutrient solution of National Horticultural Research Station in Japan (NHRS). Significantly less changes of pH and EC ($dS{\cdot}m^{-1}$) in the drainage were observed in 1/2 strength treatment as compared to other treatments. The $NO_3-N$, K, Ca, and Mg concentrations in the drainage solution of 1/2 strength treatment were maintained at optimal levels. These results indicated that the rose uptakes of both nutrients and water was more stable than those in other concentration. The concentration of macronutrients in nutrient solution were adjusted based on the ratio of nutrient:water (n/w) taken up by plants grown in the 1/2 strength solution. The composition of the new solution (classified the University of Seoul (UOS) solution) was as follow; $NO_3-N$ 8.8, $NH_4-N$ 0.67, P 2.0, K 4.8, Ca 4.0, Mg 2.0 $me{\cdot}L^{-1}$. To further evaluate new solution on crop growth, the rose 'Red Velvet' was grown again in l/2, 1, and 2 strength UOS solution to compare with 1.0 strength PBG (proefstion voor bloemisterij en glasgroenpe) solution. Overall the plant growth, including the stem length and number of five-leaflet leaves was higher in 1.0 strength of UOS solution than other treatments. Results presented in this study indicate that the nutrients in the UOS solution are well balanced for the single-stemmed rose in the closed aeroponic system.

Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters (용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구)

  • Jeung, Woo Chang;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.