Journal of the Korea Society of Computer and Information
/
v.17
no.9
/
pp.139-147
/
2012
This paper suggests simple search algorithm for optimal solution in assignment problem. Generally, the optimal solution of assignment problem can be obtained by Hungarian algorithm. The proposed algorithm reduces the 4 steps of Hungarian algorithm to 1 step, and only selects the minimum cost of row and column then gets the optimal solution simply. For the 27 balanced and 7 unbalanced assignment problems, this algorithm finds the optimal solution but the genetic algorithm fails to find this values. This algorithm improves the time complexity O($n^3$) of Hungarian algorithm to O(n). Therefore, the proposed algorithm can be general algorithm for assignment problem replace Hungarian algorithm.
Journal of the Korean Operations Research and Management Science Society
/
v.21
no.1
/
pp.147-161
/
1996
Generally the Multiprocessor Scheduling (MPS) problem is difficult to solve because of the precedence of the tasks, and it takes a lot of time to obtain its optimal solution. Though Genetic Algorithm (GA) does not guarantee the optimal solution, it is practical and effective to solve the MPS problem in a reasonable time. The algorithm developed in this research consists of a improved GA and GP/MISF (Critical Path/Most Immediate Successors First). An efficient genetic operator is derived to make GA more efficient. It runs parallel CP/MISF with GA to complement the faults of GA. The solution by the developed algorithm is compared with that of CP/MISF, and the better is taken as a final solution. As a result of comparative analysis by using numerical examples, although this algorithm does not guarantee the optimal solution, it can obtain an approximate solution that is much closer to the optimal solution than the existing GA's.
Proceedings of the Korean Operations and Management Science Society Conference
/
1995.09a
/
pp.220-229
/
1995
Generally the Multiprocessor Scheduling(MPS) problem is difficult to solve because of the precedence of the tasks, and it takes a lot of time to obtain its optimal solution. Though Genetic Algorithm(GA) does not guarantee the optimal solution, it is practical and effective to solve the MPS problem in a reasonable time. The algorithm developed in this research consists of a improved GA and CP/MISF(Critical Path/Most Immediate Successors First). A new genetic operator is derived to make GA more efficient. It runs parallel CP/MISF with Ga to complement the faults of GA. The solution by the developed algorithm is compared with that of CP/MISF, and the better is taken as a final solution. As a result of comparative analysis by using numerical examples, although this algorithm does not guarantee the optimal solution, it can obtain an approximate solution that is much closer to the optimal solution than the existing GA's.
Journal of the Korean Operations Research and Management Science Society
/
v.23
no.1
/
pp.1-16
/
1998
The zone clustering problem arising from several area such as deciding the optimal location of ambient measuring stations is to devide the 2-dimensional area into several sub areas in which included individual zone shows simimlar properties. In general, the optimal solution of this problem is very hard to obtain. Therefore, instead of finding an optimal solution, the generation of near optimal solution within the limited time is more meaningful. In this study, the combination of a genetic algorithm and the modified k-means method is used to obtain the near optimal solution. To exploit the genetic algorithm effectively, a representation of chromsomes and appropriate genetic operators are proposed. The k-means method which is originally devised to solve the object clustering problem is modified to improve the solutions obtained from the genetic algorithm. The experiment shows that the proposed method generates the near optimal solution efficiently.
In this paper, we raised the performance of heuristic algorithm to assign job to workers in parallel line inspection process without sequence. In previous research, we developed the heuristic algorithm. But the heuristic algorithm can't find optimal solution perfectly. In order to solve this problem, we proposed new method to make initial solution called FN(First Next) method and combined the new FN method and old FE method using previous heuristic algorithm. Experiments of assigning job are performed to evaluate performance of this FE+FN heuristic algorithm. The result shows that the FE+FN heuristic algorithm can find the optimal solution to assign job to workers evenly in many type of cases. Especially, in case there are optimal solutions, this heuristic algorithm can find the optimal solution perfectly.
This paper focuses on intelligent control of induction motor by hybrid system consisting of GA-PSO. Induction motor has been using in industrial area. However, it is challengeable on how we control effectively. From this point, an optimal solution using GA (Genetic Algorithm) and PSO (Particle Swarm Optimization) is introduced to intelligent control. In this case, it is possible to obtain local solution because chromosomes or individuals which have only a close affinity can convergent. To improve an optimal learning solution of control, This paper deal with applying PSO and Euclidian data distance to mutation procedure on GA's differentiation. Through this approaches, we can have global and local optimal solution together, and the faster and the exact optimal solution without any local solution. Four test functions are used for proof of this suggested algorithm.
The main purpose of this study is to find out the optimal solution of the vehicle routing problem considering heterogeneous vehicle(s), double-trips, and multi depots. This study suggests a mathematical programming model with new numerical formula which considers the amount of delivery and sub-tour elimination and gives optimal solution by using OPL-STUDIO(ILOG). This study also suggests modified genetic algorithm which considers the improvement of the creation method for initial solution, application of demanding point, individual and last learning method in order to find excellent solution, survival probability of infeasible solution for allowance, and floating mutation rate for escaping from local solution. The suggested modified genetic algorithm is compared with optimal solution of the existing problems. We found the better solution rather than the existing genetic algorithm. The suggested modified genetic algorithm is tested by Eilon and Fisher data(Eilon 22, Eilon 23, Eilon 30, Eilon 33, and Fisher 10), respectively.
Journal of the Korea Society of Computer and Information
/
v.21
no.1
/
pp.131-138
/
2016
In this paper, we propose a simple linear bottleneck assignment problems (LBAP) algorithm to find the optimal solution. Generally, the LBAP has been solved by threshold or augmenting path algorithm. The primary characteristic of proposed algorithm is derived the optimal solution of LBAP from linear sum assignment problem (LSAP). Firstly, we obtains the solution for LSAP from the selected minimum cost of rows and moves the duplicated costs in row to unselected row with minimum increasing cost in direct and indirect paths. Then, we obtain the optimal solution of LBAP according to the maximum cost of LSAP can be move to less cost. For the 29 balanced and 7 unbalanced problem, this algorithm finds optimal solution as simple.
Journal of the Korea Society of Computer and Information
/
v.20
no.8
/
pp.105-112
/
2015
Generally, the optimal solution of assignment problem has been obtained by Hungarian algorithm with O($n^3$) time complexity. This paper proposes more simple algorithm with O($n^2$) time complexity than Hungarian algorithm. The proposed algorithm simply selects minimum cost in each row, and classified into set S, H, and T. Then, the minimum cost is moved from S to T and $S{\rightarrow}H$, $H{\rightarrow}T$. The proposed algorithm can be obtain the same optimal solution as well-known algorithms and improve the optimal solution of partial unbalanced assignment problems.
International conference on construction engineering and project management
/
2015.10a
/
pp.656-657
/
2015
Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.