• Title/Summary/Keyword: Optimal Sliding-Mode Control

검색결과 110건 처리시간 0.025초

모터시스템의 전역 최적 슬라이딩모드 제어기의 설계 (A Design of Global Optimal Sliding Mode Control for Motor Systems)

  • 최형식;조용성;박용헌
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.101-107
    • /
    • 2000
  • A design of the global optimal sliding mode control is presented to control the second order uncertain time varying system with torque limit. With specified ranges of parametric uncertainties and torque limit, the minimum arrival time to reference inputs can be calculated. The proposed control scheme is applied to the motor system carrying loads. The merit of the proposed control scheme is that the arriving time at the reference input, which is the revolution angle, and the maximum allowable acceleration are expressed in a closed form solution. The superior performance of the proposed control scheme is validated by the computer simulation and experiments comparing with other sliding mode controllers.

  • PDF

선형 Magnetostatic 작동기의 정밀 접촉력제어를 위한 최적제어기 설계 (Optimal contact force control for a linear magnetostatic actuator)

  • 강희석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.272-275
    • /
    • 1997
  • When a manipulator makes contact with an object having position uncertainty, performance measures vary considerably with the control law. To achieve the optimal solution for this problem, an unique objective function that weights time and impact force is suggested and is solved with the help of variational calculus. The resulting optimal velocity profile is then modified to define a sliding mode for the impact and force control. The sliding mode control technique is used to achieve the desired performance. Sets of experiments are performed, which show superior performance compared to any existing controller.

  • PDF

BLDC 서보 모터를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계 (Adaptive fuzzy sliding-mode control for BLDC Servo Mortor)

  • 박수식
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.624-627
    • /
    • 2000
  • An adaptive fuzzy sliding-mode control system which combines the merits of sliding-mode control the fuzzy inference mechanism and the adaptive algorithm is proposed. A fuzzy sliding-mode controller is investigated in which a simple fuzzy inference mechamism is used to estimate the upper bound of uncertainties., The fuzzy inference mechanism with centre adaptation of membership functions is investigated to estimate the optimal bound of uncertainties.

  • PDF

Composite Control for Inverted Pendulum System

  • Kwon, Yo-Han;Kim, Beom-Soo;Lee, Sang-Yup;Lim, Myo-Taeg
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.84-91
    • /
    • 2002
  • A new composite control method for a carriage balancing single inverted pendulum system is proposed and applied to swing up the pendulum and to stabilize it under the state constraint. The target inverted pendulum system has an extremely limited length of the cart(below 16cm). The proposed swing-up controller comprises a sliding mode control algorithm and an optimal control algorithm based on two regions: the region near the inverted unstable equilibrium position and the rest of the state space including the downward stable equilibrium position. The sliding mode controller uses a switching control action to converge along the specified path(hyperplane) derived from energy equation from a state around the path to desired state(standing position). An optimal control method is also used to guarantee the stability at unstable equilibrium position. Compared with the reported controllers, it is simpler and easier to implement. Experimental results are given to show the effectiveness of this controller.

슬라이딩 모드 제어를 이용한 HDD 하이브리드 제어기 설계 및 안정성 평가 (Design and Stability Test of a HDD Hybrid Controller Using Sliding-Mode Control)

  • 변지영;곽성우;유관호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권10호
    • /
    • pp.671-677
    • /
    • 2004
  • This paper presents the design of a now controller for the read/write head of a hard disk drive. The general controller for seeking is the time-optimal control. However if we use only the time optimal control law, this could be vulnerable to chattering effect. To solve this problem, we propose a modified controller design algorithm in this paper. The proposed controller consists of bang-bang control for seeking and sliding-mode control for tracking. Moreover, to test the robustness and stability of control system, a bounded disturbance is selected to maximize a severity index. Simulation results show the superiority of the proposed controller through comparison with time optimal VSC(variable structure control).

나노 스테이지에 대한 슬라이딩-모드 제어 기반의 강인 최적 제어기 설계 (Design of Robust Optimal Controller for Nano Stage using Sliding-mode Control)

  • 최인성;최승옥;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.101-103
    • /
    • 2007
  • In this paper. we design a robust optimal controller for ultra-precision positioning system. Generally, it is hard to control the nanometric scale positioning system because of the parameter uncertainties and external disturbances. To solve this problem. we suggest a control algorithm based on the modified sliding-mode control and the LQ control in an augmented system. The augmented system is composed of additional state variables: state estimates and control input in the nominal system. Through comparison with LQ optimal control, it is verified that the proposed control algorithm is more robust to the unexpected parameter variations and external noises.

  • PDF

MR 감쇠기를 이용한 구조물의 변형된 슬라이딩 모드 제어 (Modified Sliding Mode Control of Structures Using MR Dampers)

  • 민경원;정진욱
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.243-250
    • /
    • 2002
  • Semi-active control devices have received significant attention in recent Years because they offer the adaptability of active-control devices without requiring the associated large power sources. Magnetorheological(MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. This paper applies sliding mode control method using target variation rate of Lyapunov function for the control of structures by use of MR dampers. The three-story building model under earthquake excitation is analyzed by installing a MR damper in the first-story. The performance of semi-active controllers designed by clipped-optimal algorithm and modified sliding mode control algorithm is compared to the performance of passive-type MR dampers. The results indicate that semi-active controllers achieve a greater reduction of responses than passive-type system and especially the controller by modified sliding mode control method shows a good applicability in the view of response control and control force.

슬라이딩모드 제어 기법을 이용한 구조-제어 시스템의 통합 최적 설계 (Combined Optimal Design of Structure-Control Systems by Sliding Mode Control)

  • 박중현
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.45-51
    • /
    • 2002
  • To achieve the lightweight and robust design of a structure, it is requested to design a structure and its control system simultaneously, which is called as the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as an example for the applying the optimum design method. An initial load and a time varying disturbance were applied at the free end of the beam. Sliding mode control was selected due to its insensitiveness to the disturbance compared with other modes. It is known that the sliding mode control is robust to the disturbance and the uncertainty only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane and the objective function of the optimum switching hyper plane was assumed to be the objective one of the control system. The total weight of the structure was treated as a constraint and the cross sectional areas of the beam were considered as design variables, which means a nonlinear programming problem. The sequential linear programming method was applied to solve it. As a result of the optimum design, the effect of attenuating vibrations has been improved obviously. Moreover, lightweight design of the structure became possible from the relationship of the weight of the structure and the control objective function.

슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어 (Cutting Force Regulation in Turning Using Sliding Mode Control)

  • 박영빈;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.