• Title/Summary/Keyword: Optimal Sensor Placement

Search Result 61, Processing Time 0.021 seconds

Sensor placement for structural health monitoring of Canton Tower

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.313-329
    • /
    • 2012
  • A challenging issue in design and implementation of an effective structural health monitoring (SHM) system is to determine where a number of sensors are properly installed. In this paper, research on the optimal sensor placement (OSP) is carried out on the Canton Tower (formerly named Guangzhou New Television Tower) of 610 m high. To avoid the intensive computationally-demanding problem caused by tens of thousands of degrees of freedom (DOFs) involved in the dynamic analysis, the three dimension finite element (FE) model of the Canton Tower is first simplified to a system with less DOFs. Considering that the sensors can be physically arranged only in the translational DOFs of the structure, but not in the rotational DOFs, a new method of taking the horizontal DOF as the master DOF and rotational DOF as the slave DOF, and reducing the slave DOF by model reduction is proposed. The reduced model is obtained by IIRS method and compared with the models reduced by Guyan, Kuhar, and IRS methods. Finally, the OSP of the Canton Tower is obtained by a kind of dual-structure coding based generalized genetic algorithm (GGA).

Optimal sensor placements for system identification of concrete arch dams

  • Altunisik, Ahmet Can;Sevim, Baris;Sunca, Fezayil;Okur, Fatih Yesevi
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.397-407
    • /
    • 2021
  • This paper investigates the optimal sensor placements and capabilities of this procedure for dynamic characteristics identification of arch dams. For this purpose, a prototype arch dam is constructed in laboratory conditions. Berke arch dam located on the Ceyhan River in city of Osmaniye is one of the highest arch dam constructed in Turkey is selected for field verification. The ambient vibration tests are conducted using initial candidate sensor locations at the beginning of the study. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to extract experimental dynamic characteristics. Then, measurements are repeated according to optimal sensor locations of the dams. These locations are specified using the Effective Independence Method. To determine the optimal sensor locations, the target mode shape matrices which are obtained from ambient vibration tests of the selected dam with a large number of accelerometers are used. The dynamic characteristics obtained from each ambient vibrations tests are compared with each other. It is concluded that the dynamic characteristics obtained from initial measurements and those obtained from a limited number of sensors are compatible with each other. This situation indicates that optimal sensor placements determined by the Effective Independence Method are useful for dynamic characteristics identification of arch dams.

A multitype sensor placement method for the modal estimation of structure

  • Pei, Xue-Yang;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.407-420
    • /
    • 2018
  • In structural health monitoring, it is meaningful to comprehensively utilize accelerometers and strain gauges to obtain the modal information of a structure. In this paper, a modal estimation theory is proposed, in which the displacement modes of the locations without accelerometers can be estimated by the strain modes of selected strain gauge measurements. A two-stage sensor placement method, in which strain gauges are placed together with triaxial accelerometers to obtain more structural displacement mode information, is proposed. In stage one, the initial accelerometer locations are determined through the combined use of the modal assurance criterion and the redundancy information. Due to various practical factors, however, accelerometers cannot be placed at some of the initial accelerometer locations; the displacement mode information of these locations are still in need and the locations without accelerometers are defined as estimated locations. In stage two, the displacement modes of the estimated locations are estimated based on the strain modes of the strain gauge locations, and the quality of the estimation is seen as a criterion to guide the selection of the strain gauge locations. Instead of simply placing a strain gauge at the midpoint of each beam element, the influence of different candidate strain gauge positions on the estimation of displacement modes is also studied. Finally, the modal assurance criterion is utilized to evaluate the performance of the obtained multitype sensor placement. A bridge benchmark structure is used for a numerical investigation to demonstrate the effectiveness of the proposed multitype sensor placement method.

Optimal Sensor Placement of Boundaries and Robustness Analysis for Chemical Release Detection and Response of Near Plant (주변 사업장의 화학물질 확산 감지와 대응을 위한 경계면의 센서배치 최적화 및 강건성 분석)

  • Cho, Jaehoon;Kim, Hyunseung;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.104-111
    • /
    • 2016
  • Recently, the quantities of chemical material are increasing in chemical industries. At that time, release accident is increasing due to aging of equipment, mechanical failure, human error, etc. and industrial complexes found community properties in a specific area. For that matter, chemical release accident can lead to hight probability of large disaster. There is a need to analyze the boundaries optimal sensor placement calculated by selecting release scenarios through release condition and wether condition in a chemical process for release detection and response. This paper is to investigate chlorine release accident scenarios using COMSOL. Through accident scenarios, a numerical calculation is studied to determine optimized sensor placement with weight of detection probability, detection time and concentration. In addition, validity of sensor placement is improved by robustness analysis about unpredicted accident scenarios. Therefore, this verifies our studies can be effectively applicable on any process. As mention above, the result of this study can help to place mobile sensor, to track gas release based concentration data.

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Optimal Sensor Placement for Rapid Detecting in Chemical Leak Accident (화학물질의 누출에서 빠른 감지를 위한 센서 배치 최적화)

  • Cho, Jaehoon;Kim, Hyunseung;Kim, Taeok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.66-71
    • /
    • 2016
  • Nowadays, a number of sensors which are placed in industrial complex are monitoring areas involving chemical leak and other faults. However, even in the presence of the sensors, chemical leaks, sometimes involving huge amount of chemicals, continuously led to big losses in the industrial complex. In most industries, sensor installation has been performed using past experience or using senor manufacturers' guideline; which leads to poor performance of the installed sensor grid. Therefore, we investigate an optimal placement methodology of point sensors for rapid detention and response when chemical leaks happen. This research suggests a generalized formulation suitable for the optimized decision making of minimizing number of sensors to be placed and increasing the fraction of covered scenarios under assumption of negligible effect of other structures. The proposed method has been verified for suitable performance for simple leak scenario simulations, by achieving the safety objectives and guaranteeing safe process operations.

Optimal Sensor Allocation of Cable-Stayed Bridge for Health Monitoring (사장교의 상시감시를 위한 최적 센서 구성)

  • Heo, Gwang-Hee;Choi, Mhan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.145-155
    • /
    • 2002
  • It is essential for health monitoring of a cable-stayed bridge to provide more accurate and enough information from the sensors. In experimental modal testing, the chosen measurement locations and the number of measurements have a major influence on the quality of the results. The choice is often difficult for complex structures like a cable-stayed bridge. It is extremely important a cable-stayed bridge to minimize the number of sensing operations required to monitor the structural system. In order to obtain the desired accuracy for the structural test, several issues must take into consideration. Two important issues are the number and location of response sensors. There are usually several alternative locations where different sensors can be located. On the other hand, the number of sensors might be limited due to economic constraints. Therefore, techniques such as methodologies, algorithms etc., which address the issue of limited instrumentation and its effects on resolution and accuracy in health monitoring systems are paramount to a damage diagnosis approach. This paper discusses an optimum sensor placement criterion suitable to the identification of structural damage for continuous health monitoring. A Kinetic Energy optimization technique and an Effective Independence Method are analyzed and numerical and theoretical issues are addressed for a cable-stayed bridge. Its application to a cable-stayed bridge is discussed to optimize the sensor placement for identification and control purposes.

Optimal Placement of Strain Gauge for Vibration Measurement for Fan Blade (블레이드 진동측정을 위한 스트레인 게이지 설치위치 최적화)

  • Choi ByeongKeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.819-826
    • /
    • 2004
  • A multi-step optimum strategy for the selection of the locations and directions of strain gauges is proposed in this paper to capture at best the modal response of blade in a series of modes on fan blades. It is consist of three steps including two pass reduction step, genetic algorithm and fine optimization to find the locations-directions of strain gauges. The optimization is based upon the maximum signal-to-noise ratio(SNR) of measured strain values with respect to the inherent system measurement noise, the mispositioning of the gauge in location and gauge failure. Optimal gauge positions for a fan blade is analyzed to prove the effectiveness of the multi-step optimum methodology and to investigate the effects of the considering parameters such as the mispositioning level, the probability of gauge failure, and the number of gauges on the optimal strain gauge position.

Optimized finite element model updating method for damage detection using limited sensor information

  • Cheng, L.;Xie, H.C.;Spencer, B.F. Jr.;Giles, R.K.
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.681-697
    • /
    • 2009
  • Limited, noisy data in vibration testing is a hindrance to the development of structural damage detection. This paper presents a method for optimizing sensor placement and performing damage detection using finite element model updating. Sensitivity analysis of the modal flexibility matrix determines the optimal sensor locations for collecting information on structural damage. The optimal sensor locations require the instrumentation of only a limited number of degrees of freedom. Using noisy modal data from only these limited sensor locations, a method based on model updating and changes in the flexibility matrix successfully determines the location and severity of the imposed damage in numerical simulations. In addition, a steel cantilever beam experiment performed in the laboratory that considered the effects of model error and noise tested the validity of the method. The results show that the proposed approach effectively and robustly detects structural damage using limited, optimal sensor information.