DOI QR코드

DOI QR Code

Optimal Sensor Placement of Boundaries and Robustness Analysis for Chemical Release Detection and Response of Near Plant

주변 사업장의 화학물질 확산 감지와 대응을 위한 경계면의 센서배치 최적화 및 강건성 분석

  • Cho, Jaehoon (Department of Chemical Engineering, Myongji University) ;
  • Kim, Hyunseung (Department of Chemical Engineering, Myongji University) ;
  • Kim, Tae-Ok (Department of Chemical Engineering, Myongji University) ;
  • Shin, Dongil (Department of Chemical Engineering, Myongji University)
  • Received : 2016.09.05
  • Accepted : 2016.10.25
  • Published : 2016.10.31

Abstract

Recently, the quantities of chemical material are increasing in chemical industries. At that time, release accident is increasing due to aging of equipment, mechanical failure, human error, etc. and industrial complexes found community properties in a specific area. For that matter, chemical release accident can lead to hight probability of large disaster. There is a need to analyze the boundaries optimal sensor placement calculated by selecting release scenarios through release condition and wether condition in a chemical process for release detection and response. This paper is to investigate chlorine release accident scenarios using COMSOL. Through accident scenarios, a numerical calculation is studied to determine optimized sensor placement with weight of detection probability, detection time and concentration. In addition, validity of sensor placement is improved by robustness analysis about unpredicted accident scenarios. Therefore, this verifies our studies can be effectively applicable on any process. As mention above, the result of this study can help to place mobile sensor, to track gas release based concentration data.

최근 화학물질을 사용하는 시설이 증가하면서 동시에 시설의 노후화, 기계적 결함, 인적오류 등으로 화학물질 누출사고 피해가 많아지고 있다. 특히, 산업단지는 군집 특성으로 인해 화학물질 누출사고 발생 시 인근 사업장으로 확산되어 큰 피해로 이어질 가능성이 크다. 이에 따라 화학물질을 취급하는 공정의 누출조건, 환경조건을 반영한 다양한 누출 시나리오를 토대로 빠른 감지와 대응을 위해 경계면의 센서배치 방안을 제시할 필요가 있다. 따라서 본 연구에서는 염소가스가 누출되는 경우에 대해 COMSOL를 사용하여 주요 매개변수의 적용으로 실질적인 사고 시나리오를 해석하였다. 그리고 사고 시나리오를 바탕으로, 센서의 감지 확률과 감지시간 등 각 항목마다 중요도를 부여하여 최적 위치가 산출되도록 목적함수를 선정하였다. 또한 예상치 못한 지역의 누출사고에 대해 최적화된 센서배치의 강건성 분석을 통해 본 방안의 타당성을 높였다. 결과적으로, 기존 방식보다 효과적으로 경계면의 센서배치 최적화 방법의 적용 가능성을 확인하였다. 이상의 결과로 부터 이동식 센서의 배치방법과 농도 데이터를 기반으로, 누출원의 역추적에 도움을 줄 수 있을 것으로 기대한다.

Keywords

References

  1. Choi, J. S., "A Study on the Improvment of Industrial- Environmental Policies for the Development of EIPs in Korea", Journal of the Korean Urban Management Association, 15(1), 87-111, (2002)
  2. Cho, J. H., Kim, H. S., An, S. H., and Dong, I. S., "Massive CFD simulations of chemical releases and optimal sensor placement for plant boundaries", Theories and Applications of Chem. Eng., 22(1), 1223, (2016)
  3. Dandrieux, A., Dusserre, G., and Ollivier, J., "Small Scale Field Experiments of Chlorine Dispersion", Journal of Loss Prevention in the Process Industries, 15, 5-10, (2002) https://doi.org/10.1016/S0950-4230(01)00019-5
  4. Jang, S. I., Kim, Y. R., Shin, D. I., Park, K. S., and Kim, T. O., "Assessment of Dispersion Coefficients and Downward Positions of Water Spray for Small Scale Release of Chlorine Gas", J. of the Korean Institude of Gas, 19(1), 51-56, (2015) https://doi.org/10.7842/kigas.2015.19.1.51
  5. Go, J. S., "Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank", Journal of the Korea society of Disaster information, 9(4), 449-461, (2013)
  6. Cho, S. H., A Study On Optimal Sensor location based on Minimax Method With Cost Minimization, M.S. Thesis, Seoul University, (2014)
  7. DeFriend, S., Dejmek, M., Porter, L., Deshotels, B., and Natvig, B., "A risk - based approach to flammable gas detector spacing", Jouranal of Hazardous Materials, 159, 142-151, (2008) https://doi.org/10.1016/j.jhazmat.2007.07.123
  8. Genserik, R., Senne, C., and Yulia, P., "A gametheory based Multi-plant Collaboration Model (MCM) for cross-plant prevention in a chemical cluster", Jouranal of Hazardous Materials, 209, 164-176, (2012)
  9. Han, S. H., Risk Analysis of Propylene Recovery Unit by Quantitative Risk Assessment, M.S. Thesis, Myongji University, (2013)
  10. Kim, Y. R., Toxic Effect Analysis of Release Accidents of Hydrogen Sulfide in Crude Oil Production Process, M.S. Thesis, Myongji University, (2016)
  11. Roy, P. K., Bhatt, A., and Rajagopal, C., "Quantitative risk Assessment for accidental release of titanium tetrachloride in a titanium sponge production plant", J. of Hazardous Materials, 102(2-3), 167-186, (2003) https://doi.org/10.1016/S0304-3894(03)00220-6
  12. Legg, S. W. and Benavides-Serrano, A. J., "A stochastic programming approach for gas detector placement using CFD-based dispersion simulations", Computers and Chemical Engineering, 47, 194-201, (2012) https://doi.org/10.1016/j.compchemeng.2012.05.010
  13. Ucinski, D., "Optimal sensor location for parameter estimation of distributed processes", International Journal of control, 73(13), 1235-1248, (2000) https://doi.org/10.1080/002071700417876
  14. Miyata, E., and Mori, s., "Optimization of gas detector locations by application of atmospheric dispersion modeling tools", R&D Report, SUMITOMO KAGAKU, v.2011-I, (2011)
  15. Kim, J. H. and Jung, S. H., "Offsite consequence modeling for HF accidental release scenarios", Theories and Applications of Chem. Eng., 21(1), 1176-1179, (2015)
  16. Kim, Y. S., Lee, S. J., Park, T. K., and Lee, G. B., "Robust leak detection and its localization using interval estimation for water distribution network", Computers and Chemical Engineering, 92, 1-17, (2016) https://doi.org/10.1016/j.compchemeng.2016.04.027