• Title/Summary/Keyword: Optimal Sensitivity

Search Result 1,234, Processing Time 0.032 seconds

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Optimization of Operation Frequency of Orthogonal Fluxgate Sensor Fabricated with Co Based Amorphous Wire

  • Kim, Young-Hak;Kim, Yongmin;Yang, Chang-Seob;Shin, Kwang-Ho
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.159-162
    • /
    • 2013
  • We present how to optimize the operation condition including frequency of the orthogonal fluxgate sensor in this paper. The orthogonal fluxgate sensor was fabricated with a Co-based amorphous wire with 10 mm long and 100 ${\mu}m$ in the diameter and a 270-turn pickup coil wound on the amorphous wire. In order to investigate the frequency dependence of the sensitivity, output spectra of the sensor which was connected by using a coaxial cable with various lengths of 0.5-5 m were measured with a RF lock-in amplifier. The maximum sensitivities were obtained at different frequencies according to coaxial cable lengths. It was found that the optimal operation frequencies, at which maximum sensitivities were appeared, were almost identical to the frequencies of impedance resonance. The maximum sensitivity and optimal operation frequency were 1.1 V/Oe (${\approx}$ 11000 V/T) and 1.25 MHz respectively.

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

Amperometric Detection of Hydroquinone and Homogentisic Acid with Laccase Immobilized Platinum Electrode

  • Quan, De;Shin, Woon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.833-837
    • /
    • 2004
  • DeniLite$^{TM}$ laccase immobilized platinum electrode was used for amperometric detection of hydroquinone (HQ) and homogentisic acid (HGA) by means of substrate recycling. In case of HQ, the obtained sensitivity is 280 nA/ ${\mu}$M with linear range of 0.2-35 ${\mu}$M ($r^2$ = 0.998) and detection limit (S/N = 3) of 50 nM. This high sensitivity can be attributed to chemical amplification due to the cycling of the substrate caused by enzymatic oxidation and following electrochemical regeneration. In case of HGA, the obtained sensitivity is 53 nA/ ${\mu}$M with linear range of 1-50 $[\mu}M\;(r^2$ = 0.999) and detection limit of 0.3 ${\mu}$M. The response times ($t_{90%}$) are about 2 seconds for the two substrates and the long-term stability is 60 days for HQ and around 40-50 days for HGA with retaining 80% of initial activities. The very fast response and the durable long-term stability are the principal advantages of this sensor. pH studies show that optimal pH of the sensor for HQ is 6.0 and that for HGA is 4.5-5.0. This shift of optimal pH towards acidic range for HGA can be attributed to the balance between enzyme activity and accessibility of the substrate to the active site of the enzyme.

An Evaluation of the Second-order Approximation Method for Engineering Optimization (최적설계시 이차근사법의 수치성능 평가에 관한 연구)

  • 박영선;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

Risk Factors of the 2-Year Mortality after Bipolar Hemiarthroplasty for Displaced Femoral Neck Fracture

  • Jung Wook Huh;Han Eol Seo;Dong Ha Lee;Jae Heung Yoo
    • Hip & pelvis
    • /
    • v.35 no.3
    • /
    • pp.164-174
    • /
    • 2023
  • Purpose: This study investigates the relationship between preoperative neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-C-reactive protein ratio (LCR), albumin, and 2-year mortality in elderly patients having hemiarthroplasty for displaced femoral neck fracture (FNF). Materials and Methods: We retrospectively reviewed 284 elderly patients who underwent hemiarthroplasty for Garden type IV FNF from September 2014 to September 2020. Using the receiver operating characteristic curve, optimal cutoff values for LCR, NLR, and albumin were established, and patients were categorized as low or high. Associations with 2-year mortality were evaluated through univariate and multivariate Cox regression analyses. Results: Of the 284 patients, 124 patients (45.9%) died within 2 years post-surgery. The optimal cutoff values were: LCR at 7.758 (specificity 58.5%, sensitivity 25.0%), NLR at 3.854 (specificity 39.2%, sensitivity 40.0%), and albumin at 3.750 (specificity 65.9%, sensitivity 21.9%). Patients with low LCR (<7.758), high NLR (≥3.854), and low albumin (<3.750) had a statistically significant reduced survival time compared to their counterparts. Conclusion: Lower preoperative LCR and albumin levels, along with higher NLR, effectively predict 2-year mortality and 30-day post-surgery complications in elderly patients with Garden type IV FNF undergoing hemiarthroplasty.

Topology Design Optimization and Experimental Validation of Heat Conduction Problems (열전도 문제에 관한 위상 최적설계의 실험적 검증)

  • Cha, Song-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • In this paper, we verify the optimal topology design for heat conduction problems in steady stated which is obtained numerically using the adjoint design sensitivity analysis(DSA) method. In adjoint variable method(AVM), the already factorized system matrix is utilized to obtain the adjoint solution so that its computation cost is trivial for the sensitivity. For the topology optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of the structure and the allowable volume, respectively. For the experimental validation of the optimal topology design, we compare the results with those that have identical volume but designed intuitively using a thermal imaging camera. To manufacture the optimal design, we apply a simple numerical method to convert it into point cloud data and perform CAD modeling using commercial reverse engineering software. Based on the CAD model, we manufacture the optimal topology design by CNC.

Supply Chain Coordination in 2-Stage-Ordering-Production System with Update of Demand Information

  • Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.3
    • /
    • pp.304-318
    • /
    • 2014
  • It is necessary for a retailer to improve responsiveness to uncertain customer demand in product sales. In order to solve this problem, this paper discusses an optimal operation for a 2-stage-ordering-production system consisting of a retailer and a manufacturer. First, based on the demand information estimated at first order time $t_1$, the retailer determines the optimal initial order quantity $Q^*_1$, the optimal advertising cost $a^*_1$ and the optimal retail price $p^*_1$ of a single product at $t_1$, and then the manufacturer produces $Q^*_1$. Next, the retailer updates the demand information at second order time $t_2$. If the retailer finds that $Q^*_1$ dissatisfies the demand indicated by the demand information updated at $t_2$, the retailer determines the optimal second order quantity $Q^*_2$ under $Q^*_1$ and adjusts optimally the advertising cost and the retail price to $a^*_2$ and $p^*_2$ at $t_2$. Here, decision-making approaches for two situations are made-a decentralized supply chain (DSC) whose objective is to maximize the retailer's profit and an integrated supply chain (ISC) whose objective is to maximize the whole system's profit. In the numerical analysis, the results of the optimal decisions under DSC are compared with those under ISC. In addition, supply chain coordination is discussed to adjust the unit wholesale price at each order time as Nash Bargaining solutions.

Optimization of Body Section usign Hybrid Model (혼합모델을 이용한 차체 단면의 최적화 방법에 관한 연구)

  • 고병식
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.437-443
    • /
    • 2000
  • The optimal design problem for increasing dynamic stiffness using hybrid model which composed of original detailed BIW(body in white) and impinged beam elements is investigated. Using the characteristics of the beam elements and design sensitivity analysis this approach utilizes an optimization technique to determine the optimal section properties of beam elements. The constraint is to increase the first natural frequency by five percent compared with original one. The results show that the first torsion and bending natural frequencies are increased by five percent using hybrid model and optimization. These results indicate that this optimization method can be employed to enhance the dynamic stiffness of vehicle body structure in design concept stage.

  • PDF

Optimal Power Flow based on Priority of Generation Rescheduling (발전력재배분의 priority를 이용한 최적전력조류)

  • Kim, Kyu-Ho;Kim, Soo-Nam;Rhee, Sang-Bong;Lee, Sang-Keun;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.412-413
    • /
    • 2011
  • This paper presents a new generation rescheduling approach for preventive control of power systems, which can optimally reallocate power generations for unstable contingencies. The transient stability constraints used in the optimal rescheduling model are described by energy margin sensitivity. Especially the energy margin sensitivity is evaluated for change with respect to generation. For a given contingency, the energy margin is computed and the respective sensitivities are also computed.

  • PDF