• Title/Summary/Keyword: Optimal Motion Velocity

Search Result 100, Processing Time 0.027 seconds

Improving the Performance of a Robotic Dolphin with a Compliant Caudal Fin (꼬리 지느러미의 유연성을 이용한 로봇 돌고래의 성능 향상)

  • Park, Yong-Jai;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • Fish generates thrust with a compliant fin which is known to increase the efficiency. In this paper, the performance of a robotic dolphin, the velocity and the stability, was improved using an optimal compliant caudal fin under certain oscillating frequency. Optimal compliance of the caudal fin exists that maximizes the thrust at a certain oscillating frequency. Four different compliant fins were used to find the optimal compliance of the caudal fin at a certain frequency using the half-pi phase delay condition. The swimming results show that the optimal compliant fin increases the velocity of the robotic fish. The compliance of the caudal fin was also shown to improve the stability of the robotic fish. A reactive motion at the head of the robotic dolphin causes fluctuation of the caudal fin. This phenomenon increases with the oscillating frequency. However, compliant fin reduced this fluctuation and increased the stability.

Development of Simulator and Robotic Door for Parametric Design Optimization of Washing Machine Door Motion (세탁기 도어 거동 인자 설계 최적화를 위한 시뮬레이터 및 로봇형 도어 장치 개발)

  • Yi, June-Sup;Jung, Byung-Jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • A design methodology for parametric design optimization of washing machine door is presented. We develop a motion simulator and a robotic door to simulate the various motion of washing machine doors. The motion of the washing machine door is related to hinge parameters. Springs and dampers are usually used in the hinge of washing machine door for controlling motion of the door. A physical simulator of the door motion is used for finding candidate parameters of the hinge and a robotic door whose motion is controlled algorithmically is used for consumer tests. Through the consumer evaluation on the robotic motion, the optimized parameters are determined. We find the optimal parameters as a function of angle and angular velocity of the door.

Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction

  • Hoshijima, Kohta;Ikeda, Masao
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.614-620
    • /
    • 2007
  • This paper considers vibration suppression of a mechanical transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From the equation of motion, we first derive a state equation including the jerk and acceleration of the hand, but excluding the displacement and velocity of the work. Then, we design optimal state feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is effective for vibration suppression of the work and improvement of the settling time. Since state feedback including the jerk and acceleration is not practical, we propose a computation method for optimal feedback using displacements and velocities in the state only.

A Study on Optimization of Motion Parameters and Dynamic Analysis for 3-D.O.F Fish Robot (3 자유도 물고기 로봇의 동적해석 및 운동파라미터 최적화에 관한 연구)

  • Kim, Hyoung-Seok;Quan, Vo Tuong;Lee, Byung-Ryong;Yu, Ho-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1029-1037
    • /
    • 2009
  • Recently, the technologies of mobile robots have been growing rapidly in the fields such as cleaning robot, explosive ordnance disposal robot, patrol robot, etc. However, the researches about the autonomous underwater robots have not been done so much, and they still remain at the low level of technology. This paper describes a model of 3-joint (4 links) fish robot type. Then we calculate the dynamic motion equation of this fish robot and use Singular Value Decomposition (SVD) method to reduce the divergence of fish robot's motion when it operates in the underwater environment. And also, we analysis response characteristic of fish robot according to the parameters of input torque function and compare characteristic of fish robot with 3 joint and fish robot with 2 joint. Next, fish robot's maximum velocity is optimized by using the combination of Hill Climbing Algorithm (HCA) and Genetic Algorithm (GA). HCA is used to generate the good initial population for GA and then use GA is used to find the optimal parameters set that give maximum propulsion power in order to make fish robot swim at the fastest velocity.

Optimal Trajectory Planning for Cooperative Control of Dual-arm Robot (양팔 로봇의 협조제어를 위한 최적 경로 설계)

  • Park, Chi-Sung;Ha, Hyun-Uk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.891-897
    • /
    • 2010
  • This paper proposes a cooperative control algorithm for a dual-arms robot which is carrying an object to the desired location. When the dual-arms robot is carrying an object from the start to the goal point, the optimal path in terms of safety, energy, and time needs to be selected among the numerous possible paths. In order to quantify the carrying efficiency of dual-arms, DAMM (Dual Arm Manipulability Measure) has been defined and applied for the decision of the optimal path. The DAMM is defined as the intersection of the manipulability ellipsoids of the dual-arms, while the manipulability measure indicates a relationship between the joint velocity and the Cartesian velocity for each arm. The cost function for achieving the optimal path is defined as the summation of the distance to the goal and inverse of this DAMM, which aims to generate the efficient motion to the goal. It is confirmed that the optimal path planning keeps higher manipulability through the short distance path by using computer simulation. To show the effectiveness of this cooperative control algorithm experimentally, a 5-DOF dual-arm robot with distributed controllers for synchronization control has been developed and used for the experiments.

Development of an optimal protocol to induce capacitation of boar spermatozoa in vitro

  • Seung-Ik Jang;Jae-Hwan Jo;Eun-Ju Jung;Woo-Jin Lee;Ju-Mi Hwang;Jeong-Won Bae;Woo-Sung Kwon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.285-291
    • /
    • 2022
  • In 1951, Colin Russell Austin and Min Chueh Chang identified "capacitation", a special process involving ejaculated spermatozoa in the female reproductive tract. Capacitation is a phenomenon that occurs in vivo, but almost all knowledge of capacitation has been obtained from in vitro studies. Therefore, numerous trials have been performed to establish in vitro capacitation methods for various studies on reproduction. Although a series of studies have been conducted to develop an optimal protocol for inducing capacitation, most have focused on identifying the appropriate chemical compounds to induce the capacitation of boar spermatozoa in vitro. Therefore, the purpose of this study was to identify the optimal incubation time for inducing capacitation in vitro. Duroc semen was incubated for various periods (60, 90, and 120 min) to induce capacitation. Sperm function (sperm motility, motion kinematic parameters, and capacitation status) was evaluated. The results showed that total sperm motility, rapid sperm motility, progressive sperm motility, curvilinear velocity, and average path velocity significantly decreased in a time-dependent manner. However, the capacitation status did not show any significant changes. Taken together, these results indicate that an incubation time of more than 60 min suppresses sperm motility and motion kinematic parameters. Therefore, we suggest that 60 min may be the best incubation time to induce capacitation without negative effects on sperm motility and motion kinematics in boar spermatozoa in vitro.

A study on the optimal design of robot arm (로봇 팔의 최적설계에 관한 연구)

  • 조선휘;김기식;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.515-522
    • /
    • 1991
  • Determining the motion using optimal technique about traveling time and trajectory planning has been studied often in recent years, but the study of determining the optimal robot dimensions is rare, the authors attempt to find out the least driving torques and energy as the optimization of link length ratio referred to 2R SCARA and 3R robot manipulators. For the given linear path with triangular velocity profile, the inverse kinematic and dynamic problems are examined in order to lead into solution of problem, which is suggested for optimal design of link lengths. Accordingly, optimal link length ratio is obtained with respect to each case.

Evaluation of optimal ground motion intensity measures of high-speed railway train running safety on bridges during earthquakes

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Feng, Yulin;Lai, Zhipeng;Sun, Xiaoyun
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • Due to the large number of railway bridges along China's high-speed railway (HSR) lines, which cover a wide area with many lines crossing the seismic zone, the possibility of a HSR train running over a bridge when an earthquake occurs is relatively high. Since the safety performance of the train will be threatened, it is necessary to study the safety of trains running over HSR bridges during earthquakes. However, ground motion (GM) is highly random and selecting the appropriate ground-motion intensity measures (IMs) for train running safety analysis is not trivial. To deal this problem, a model of a coupled train-bridge system under seismic excitation was established and 104 GM samples were selected to evaluate the correlation between 16 different IMs and train running safety over HSR bridges during earthquakes. The results show that spectral velocity (SvT1) and displacement (SdT1) at the fundamental period of the structure have good correlation with train running safety for medium-and long-period HSR bridges, and velocity spectrum intensity (VSI) and Housner intensity (HI) have good correlation for a wide range of structural periods. Overall, VSI and HI are the optimal IMs for safety analysis of trains running over HSR bridges during earthquakes. Finally, based on VSI and HI, the IM thresholds of an HSR bridge at different speed were analyzed.

A hierachical control structure of a robot manipulator for conveyor tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 계층적 제어구조)

  • 박태형;이영대;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1046-1051
    • /
    • 1991
  • For the conveyor tracking application of a robot manipulator, a new control scheme is presented. The presented scheme is divided into two stages : the upper one is the motion planning stage and the lower one is the motion control stage. In the upper stage, the nominal trajectory which tracks the part moving in a constant velocity, is planned considering the robot arm dynamics. On the other hand, in the lower level, the perturbed trajectory is generated to track the variation in the velocity of conveyor belt via sensory feedback and the perturbed arm dynamics. In both stages, the conveyor tracking problem is formulated as an optimal tracking problem, and the torque constraints of a robot manipulator are taken into account. Simulation results are then presented and discussed.

  • PDF

Effect of Friction Coefficient from DEM Simulation in Grinding Zone of the Ball Mill (볼 밀의 분쇄장에서 DEM 시뮬레이션을 통한 마찰계수 영향)

  • Jargalsaikhan, Battsetseg;Bor, Amgalan;Uranchimeg, Khulan;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.286-295
    • /
    • 2021
  • This study attempts to find optimal conditions of the friction coefficient using a discrete element method (DEM) simulation with various friction coefficient conditions and three different grinding media with various ball sizes in a traditional ball mill (TBM). Using ball motion of the DEM simulation are obtained using the optimal friction coefficient compared with actual motion; photographs are taken by the digital camera and the snapshot images are analyzed. In the simulation, the rotation speed of the mill, the materials and velocity of the grinding media, and the friction coefficient between the balls and the wall of the pot are fixed as the actual experimental conditions. We observe the velocity according to the friction coefficient from the DEM simulation. The friction coefficient is found to increase with the velocity. Milling experiments using a traditional ball mill with the same experimental conditions as those of the DEM simulation are conducted to verify the simulated results. In addition, particle morphology change of copper powder is investigated and analyzed using scanning electron microscopy (SEM) for the milling experiment.