• 제목/요약/키워드: Optimal Layout

검색결과 307건 처리시간 0.036초

초저저항 MOS 스위치의 최적 배치설계 (Optimal Layout Methods for MOSFETs of Ultra Low Resistance)

  • 김준엽
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권12호
    • /
    • pp.596-603
    • /
    • 2002
  • New layout methods for implementing MOS switches of ultra low channel resistance are presented. These area-effective layout methods include the waffle structure, zipper structure, star zag structure and fingered waffle structure. The design equations for these new layout structures are analyzed. The area-effectiveness of these structures is compared with that of the conventional alternating bar structure. MOS switches of the waffle structure were fabricated using a standard 0.25um CMOS process. The experimental characterization results of the fabricated MOS switches are presented. The analytical comparison and experimental results show that area reductions over 40% are achievable with the new structures.

유전 알고리즘에 기초한 셀 배치의 설계 (Design of Cellular Layout based on Genetic Algorithm)

  • 이병욱;조규갑
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.197-208
    • /
    • 1999
  • This paper presents an operation sequence-based approach for determining machine cell layout in a cellular manufacturing environment. The proposed model considers the sequence of operations in evaluating the intercell and intracell movements. In this paper, design of cellular layout has an objective of minimization of total material flow among facilities, where the total material flow is defined as a weighted sum of both intercell and intracell part movements. The proposed algorithm is developed by using genetic algorithm and can be used to design an optimal cellular layout which can cope with changes of shop floor situation by considering constraints such as the number of machine cells and the number of machines in a machine cell.

  • PDF

Constraints satisfaction problem기법을 이용한 조종패널 설계방법

  • 박성준;조항준;정의승;장수영
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1994년도 춘계학술대회논문집
    • /
    • pp.75-84
    • /
    • 1994
  • A control panel layout method based on the constraint satisfaction problem(CSP) technique was developed to generate an ergonomically sound panel design. This control panel layout method attempts to incorporate a variety of relevant ergonomic principles and design constrains, and generate an optimal or, at least, a "satisfactory" solution through the efficient search algorithm. The problem of seeking an ergonomically sound panel design should be viewed as a multiple criteria problem, and most of the design objectives should be understood as constraints. Hence, a CSP technique was employed in this study for dealing with the multi-constraiants layout problem. The efficient search algorithm using "preprocess" and "look ahead" procedures was developed to handle the vast amount of computational effort. In order to apply the CSP technique to the panel layout procedure, the ergonomic principles such as spatial compatibility, frequency-of- use, importance, functional grouping, and sequence-of-use were formalized as CSP terms. The effectiveness of the developed panel layout method was evaluated by example problems, and the results clearly showed that the generated layouts took various ergonomic design principles into account.esign principles into account.

  • PDF

수학적 모델과 폭발사고 모델링을 통한 산화에틸렌 공정의 설비 배치 최적화에 관한 연구 (Study for the Plant Layout Optimization for the Ethylene Oxide Process based on Mathematical and Explosion Modeling)

  • 차상훈;이창준
    • 한국안전학회지
    • /
    • 제35권1호
    • /
    • pp.25-33
    • /
    • 2020
  • In most plant layout optimization researches, MILP(Mixed Integer Linear Programming) problems, in which the objective function includes the costs of pipelines connecting process equipment and cost associated with safety issues, have been employed. Based on these MILP problems, various optimization solvers have been applied to investigate the optimal solutions. To consider safety issues on the objective function of MILP problems together, the accurate information about the impact and the frequency of potential accidents in a plant should be required to evaluate the safety issues. However, it is really impossible to obtain accurate information about potential accidents and this limitation may reduce the reliability of a plant layout problem. Moreover, in real industries such as plant engineering companies, the plant layout is previously fixed and the considerations of various safety instruments and systems have been performed to guarantee the plant safety. To reflect these situations, the two step optimization problems have been designed in this study. The first MILP model aims to minimize the costs of pipelines and the land size as complying sufficient spaces for the maintenance and safety. After the plant layout is determined by the first MILP model, the optimal locations of blast walls have been investigated to maximize the mitigation impacts of blast walls. The particle swarm optimization technique, which is one of the representative sampling approaches, is employed throughout the consideration of the characteristics of MILP models in this study. The ethylene oxide plant is tested to verify the efficacy of the proposed model.

Tabu 탐색 기법을 활용한 개선적 공장 설비배치 (Improvement Approach on the Plant Layout Based on Tabu Search)

  • 김채복
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제6권6호
    • /
    • pp.469-477
    • /
    • 2016
  • 이 연구에서는 주어진 공장의 공간에 여러 개의 직사각형 형태 부서의 위치를 할당하고 문헌에 있는 다른 설비배치 기법과 비교하고자 한다. 이 연구는 초기 설비배치가 주어졌을 때 물류비용을 최소화하는 개선적 접근방법을 제시하였다. 기존의 문헌에 있는 접근 방법과 같이 이 연구에서 제시된 접근 방법도 하나의 설비배치에서 부서를 교환하여 더 좋은 해를 찾고자 하였으며, 물류비용을 개선하는 자기발견적 절차를 적용하였다. 수직적 교환, 수평적 교환, 통합 절차 및 분리 절차를 통해 더 좋은 해를 발견할 가능성을 높이고 크기가 같은 설비의 경우에는 설비 배치의 회전도 가능하게 하였다. 그러나 CRAFT와 달리 이 연구에서 제시되는 알고리즘은 설비 형태의 왜곡이 일어나지 않고 직사각형을 유지하는 좋은 해를 제공한다. 또한 Tabu 탐색기법을 활용하여 지역적인 최적해에서 전체 최적해를 찾아가고자 하였다. 문헌에 있는 25개의 설비배치 문제에 대하여 다른 접근 방법과 비교한 결과 제시된 접근방법이 설비의 수가 많을 때 훨씬 더 좋은 해를 제공하는 것으로 나타났다.

Optimal layout of a partially treated laminated composite magnetorheological fluid sandwich plate

  • Manoharan, R.;Vasudevan, R.;Jeevanantham, A.K.
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1023-1047
    • /
    • 2015
  • In this study, the optimal location of the MR fluid segments in a partially treated laminated composite sandwich plate has been identified to maximize the natural frequencies and the loss factors. The finite element formulation is used to derive the governing differential equations of motion for a partially treated laminated composite sandwich plate embedded with MR fluid and rubber material as the core layer and laminated composite plate as the face layers. An optimization problem is formulated and solved by combining finite element analysis (FEA) and genetic algorithm (GA) to obtain the optimal locations to yield maximum natural frequency and loss factor corresponding to first five modes of flexural vibration of the sandwich plate with various combinations of weighting factors under various boundary conditions. The proposed methodology is validated by comparing the natural frequencies evaluated at optimal locations of MR fluid pockets identified through GA coupled with FEA and the experimental measurements. The converged results suggest that the optimal location of MR fluid pockets is strongly influenced not only by the boundary conditions and modes of vibrations but also by the objectives of maximization of natural frequency and loss factors either individually or combined. The optimal layout could be useful to apply the MR fluid pockets at critical components of large structure to realize more efficient and compact vibration control mechanism with variable damping.

다중 양중장비와 자재 야적 위치의 최적 결정을 위한 모델 개발 (Optimization of Multiple Tower Cranes and Material Stockyards Layout)

  • 김경주;김경민;이상규
    • 한국건설관리학회논문집
    • /
    • 제10권6호
    • /
    • pp.127-134
    • /
    • 2009
  • 본 연구에서는 여러 대의 타워 크레인이 다양한 후보지점을 갖고, 자재 역시 다양한 야적 후좌지점을 가질 때 자재 운반 최적화를 지원하기 위한 유전자 알고리즘 기반의 모델을 제시하고자 한다. 대형 건축공사에서 타워 크레인의 위치와 자재 야적 위치의 변화는 자재 운반시간의 변화를 가져온다. 또한 여러 대의 타워 크레인을 사용하는 경우 각 자재의 운반에 어떠한 타워 크레인을 배정하느냐에 따라 작업의 효율성이 변화한다. 따라서 본 연구에서는 다중의 타워 크레인 설치 후보지, 여러 종류의 자재, 자재 야적 후보지점간의 다양하고 복잡한 상관관계를 다루기 위하여 유전자 알고리즘을 적용한 다중 양중장비 및 자재 야적 위치 최적화모델을 제시하였다. 또한, 제시된 모델을 사례에 적용하여 적용 과정을 예시하고 활용성을 검증하였다.

제약만족 알고리즘을 이용한 상호대화적 조종패널 배치 (Interactive Control Panel Layout Using a Constraint Satisfaction Algorithm)

  • 박성준;정의승;장수영
    • 대한산업공학회지
    • /
    • 제20권4호
    • /
    • pp.85-97
    • /
    • 1994
  • An interactive and iterative control panel layout method based on the constraint satisfaction problem (CSP) technique was developed to generate an ergonomically sound panel design. This control panel layout method attempts to incorporate a variety of relevant ergonomic principles and design constraints, and generate an optimal or, at least, a "satisfactory" solution through an efficient search algorithm. The problem of seeking an ergonomically sound panel design should be viewed as a multi-criteria design problem and most of the design objectives should be understood as constraints. Hence, a CSP technique was employed in this study for dealing with the multi-constraints layout problem. The efficient search algorithm using "preprocess" and "look_ahead" procedures was developed to handle vast amount of computation. In order to apply the CSP technique to the panel layout procedure, the ergonomic principles such as spatial compatibility, frequency-of-use, importance, functional grouping, and sequence-of-use were formalized as CSP terms. The effectiveness of the proposed panel layout method was evaluated by example problems and the results clearly showed that the generated layouts properly considered various ergonomic design principles.

  • PDF

An interactive and iterative control panel layout

  • 박성준;정의승;조항준
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.103-111
    • /
    • 1994
  • An interactive and iterative design method based on the constraint satisfaction problem (CSP) technique was developed to generate an ergonomically sound layout of a control panel. This control panel layout method attempts to incorporate a variety of relevant ergonomic principles and design constraints, and generate an optimal or, at least, a "satisfactory" solution through iterative interactions with the designer. The existing panel design and layout methods are mostly based on the optimization of single objective function formulated to reflect and trade off all ergonomic design objectives which are largely different in their nature. In fact, the problem of seeking an ergonomically sound panel design should be viewed as a multiple objective optimization problem. Furthermore, most of the design objectives should be understood as constraints rather than objectives to be optimized. Hence, a constraint satisfaction approach is proposed in this study as a framework for the panel designer to search through the design decision space effectively and make various design decisions iteratively. In order to apply the constraint satisfaction approach to the panel design procedure, the ergonomic principles such as frequency-of-use, importance, functional grouping, and sequence-of-use are formalized as CSP terms. With this formalization, a prototype system was implemented and applied to panel layout problems. The results clearly showed the effectiveness of the proposed approach since it permits designers to consider and iteratively evaluate various design constraints and ergonomic principles, and, therefore, aids the panel designer to come up with an ergonomically sound control panel layout.

Optimization of settlement layout based on parametric generation

  • Song, Jinghua;Xie, Xinqin;Yu, Yang
    • Advances in Computational Design
    • /
    • 제3권1호
    • /
    • pp.35-47
    • /
    • 2018
  • Design of settlement space is a complicated process while reasonable spatial layout bears great significance on the development and resource allocation of a settlement. The study proposes a weighted L-system generation algorithm based on CA (Cellular Automation) model which tags the spatial attributes of cells through changes in their state during the evolution of CA and thus identifies the spatial growth mode of a settlement. The entrance area of the Caidian Botanical and Animal Garden is used a case study for the model. A design method is proposed which starts from the internal logics of spatial generation, explores possibility of spatial rules and realizes the quantitative analysis and dynamic control of the design process. Taking a top-down approach, the design method takes into account the site information, studies the spatial generation mechanism of settlements and further presents a engine for the generation of multiple layout proposals based on different rules. A optimal solution is acquired using GA (Genetic Algorithm) which generates a settlement spatial layout carrying site information and dynamically linked to the surround environment. The study aims to propose a design method to optimize the spatial layout of the complex settlement system based on parametric generation.