• Title/Summary/Keyword: Optimal Layout

Search Result 307, Processing Time 0.022 seconds

A study on optimal of block facility layout using Hybrid GA (Hybrid GA를 이용한 최적의 블록단위 설비배치에 관한 연구)

  • 이용욱;석상문;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.131-142
    • /
    • 2000
  • Facility layout is the early stage of system design that requires a mid-term or long-term plan. Since improper facility layout might incur substantial logistics cost including material handling and re-installment costs, due consideration must be given to decisions on facility layout. Facility layout is concerned with low to arrange equipment necessary for production in a given space. Its objective is to minimize the sum of all the products of each equipment's amount of flow multiplied by distance. Facility layout also is related to the issue of NP-complete, i.e., calculated amounts exponentially increase with the increase of the number of equipment. This study discusses Hybrid GA developed, as an algorithm for facility layout, to solve the above-mentioned problems. The algorithm, which is designed to efficiently place equipment, automatically produces a horizontal passageway by the block, if a designer provides the width and length of the space to be handled. In addition, this study demonstrates the validity of the Algorithm by comparing with existing algorithms that have been developed. We present a Hybrid GA approach to the facility layout problem that improves on existing work in terms of solution quality and method. Experimental results show that the proposed algorithm is able to produce better solution quality and more practical layouts than the ones obtained by applying existing algorithms.

  • PDF

Optimal Layout Design of Offshore Wind Turbines by Response Surface Analysis (반응표면분석법에 의한 해상풍력터빈 최적배치 설계)

  • Kim, Ji-Young;Kim, Kyoung-Yul;Lee, Jun-Shin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • An optimal layout condition of the offshore wind turbines is studied by using the response surface analysis which is a kind of the design of experiments. Based on the assumption that total 36 turbines would be installed in the offshore wind farm, the number and distance of the rows and columns are used as the design variables and the efficiency decrease of power generation due to the wake decay by the interactions of turbines and the installation cost of the internal electric grid are considered as the objective functions of the response surface analysis for the layout design of turbines. Useful design information can be derived by analyzing the relationship between the design variables and target functions. It is found that the row number and the distance between rows should be minimized, and the optimal distance between columns should be estimated and adopted to the layout design within the specified design range in order to ensure the economics for the offshore wind farm.

Optimization of Spring Layout for Minimizing Twist of Sheet Metal Pins in Progressive Shearing (프로그레시브 전단 공정에서 박판 핀 비틀림 최소화를 위한 스프링 배치 최적화)

  • Song, H.K.;Shim, J.K.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.501-506
    • /
    • 2014
  • Progressive shearing with blanking dies is commonly employed to produce large quantities of tiny sheet metal electronic parts. Sheet metal pins, which are narrow and long, that are sheared with a progressive die set are often twisted. The twist in the sheet metal pins, which usually occurs in the final shearing operation, generally decreases with increasing blank holding force. The blank holding forces in all shearing operations are not the same because of different shearing positions and areas. In the current study, the optimal layout of the springs in a progressive die set to minimize the twist of the sheet metal pin is proposed. In order to find the holding force acting on the tiny narrow blanks produced with the proposed springs during the shearing process, the equivalent area method is used in the structural analysis. The shearing of the sheet-metal pin was simulated to compute the twist angle associated with the blank holding force. The constraint condition satisfying the pre-set blank holding force from the previous shearing operations was imposed. A design of experiments (DOE) was numerically implemented by analyzing the progressive die structure and by simulating the shearing process. From the meta-model created from the experimental results and by using a quadratic response surface method (PQRSM), the optimal layout of the springs was determined. The twist of sheet metal pin associated with the optimal layout of the springs found in the current study was compared with that of an existing progressive die to obtain a minimal amount of twist.

Optimization of a 3-Class-based Dedicated Linear Storage System (3지역/ 지정위치 일차선형 저장시스템의 최적화)

  • Yang, Moonhee;Kim, Sun-uk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.3
    • /
    • pp.190-196
    • /
    • 2004
  • In this paper, we address a layout design problem, PTL[3], for determining an optimal 3-class-based dedicated linear storage layout in a class of unit load storage systems. Our objective is to minimize the expected single command travel time. We analyze PTL[3] to derive a fundamental property that an optimal solution to PTL[3] is one of the partitions based on the PAI(product activity index)-nonincreasing ordering. Using the property and partial enumeration, we construct an efficient exact algorithm with O $(n\;{\lceil}\;log\;n\;{\rceil}\;)$ for solving PTL[3].

Structural Topology Optimization for A Natural Frequency (고유 진동수를 고러한 구조물의 위상 최적설계)

  • 임오강;이진석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.110-120
    • /
    • 1999
  • Topology optimization is used for determining the best layout of structural components to achieve predetermined performance goals. In the present study, we consider that the objective function is to maximize the natural frequency of the structure for a designated mode and the constraint function is to constrain a total material usage. In this paper, using a topology optimization technique based on the homogenized material and the chessboard prevention strategy, we obtain the optimal layout and the reinforcement of an elastic structure. Several examples are presented to show the ability of the topology optimization technique used in this paper to deal with an optimal layout problem for a free vibration structure.

  • PDF

Layout of Garment Patterns for Efficient Fabric Consumption

  • Madarasmi, Suthep;Sirivarothakul, Phoomsith
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1176-1179
    • /
    • 2002
  • This paper presents the use of a Genetic Algorithm to find the optimal layout for the placement of garment patterns on a fabric of fixed width to minimize fabric waste. We developed a program to simulate garment pieces and their layout on a fixed-width fabric. Each piece in the order book is placed with 2 possible orientations: 0 degrees and 180 degrees. The efficiency is measured by the length of fabric used after all the patterns in the order book have been laid out. A comparison is made between the placement using our proposed genetic algorithm to that made by an expert human using our simulation program. The results from our experiments on various pattern designs indicate that our genetic algorithm can effectively be used to obtain highly efficient solutions, comparable to that done by an expert while using a reasonable amount of time. The algorithm can also be adapted for use in other areas related to optimal consumption of sheet material such as metal, paper, and leather.

  • PDF

Optimization analysis on collection efficiency of vacuum cleaner based on two-fluid and CFD-DEM model

  • Wang, Lian;Chu, Xihua
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2020
  • The reasonable layout of vacuum cleaner can effectively improve the collection efficiency of iron filings generated in the process of steel production. Therefore, in this study, the CFD-DEM coupling model and two-fluid model are used to calculate the iron filings collection efficiency of vacuum cleaner with different inclination/cross-sectional area, pressure drop and inlet angle. The results are as follows: The CFD-DEM coupling method can truly reflect the motion mode of iron filings in pneumatic conveying. Considering the instability and the decline of the growth rate of iron filings collection efficiency caused by high pressure drop, the layout of 75° inclination is suggested, and the optimal pressure drop is 100Pa. The optimal simulation results based on two-fluid model show that when the inlet angle and pressure drop are in the range of 45°~65° and 70Pa~100Pa, larger mass flow rate of iron filings can be obtained. It is hoped that the simulation results can offer some suggestion to the layout of vacuum cleaner in the rolling mill.

Optimal Two-Section Layouts for the Two-Dimensional Cutting Problem

  • Ji, Jun;Huang, Dun-hua;Xing, Fei-fei;Cui, Yao-dong
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.271-283
    • /
    • 2021
  • When generating layout schemes, both the material usage and practicality of the cutting process should be considered. This paper presents a two-section algorithm for generating guillotine-cutting schemes of rectangular blanks. It simplifies the cutting process by allowing only one size of blanks to appear in any rectangular block. The algorithm uses an implicit enumeration and a linear programming optimal cutting scheme to maximize the material usage. The algorithm was tested on some benchmark problems in the literature, and compared with the three types of layout scheme algorithm. The experimental results show that the algorithm is effective both in computation time and in material usage.

The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant (PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구)

  • Park, Pyung Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

Optimal Layout Design of Frequency- and Temperature-dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam (점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계)

  • Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.185-191
    • /
    • 2008
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained layer damping beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple re-substitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.