• Title/Summary/Keyword: Optimal Interpolation

Search Result 154, Processing Time 0.027 seconds

Optimal Construction of Multiple Indexes for Time-Series Subsequence Matching (시계열 서브시퀀스 매칭을 위한 최적의 다중 인덱스 구성 방안)

  • Lim, Seung-Hwan;Kim, Sang-Wook;Park, Hee-Jin
    • Journal of KIISE:Databases
    • /
    • v.33 no.2
    • /
    • pp.201-213
    • /
    • 2006
  • A time-series database is a set of time-series data sequences, each of which is a list of changing values of the object in a given period of time. Subsequence matching is an operation that searches for such data subsequences whose changing patterns are similar to a query sequence from a time-series database. This paper addresses a performance issue of time-series subsequence matching. First, we quantitatively examine the performance degradation caused by the window size effect, and then show that the performance of subsequence matching with a single index is not satisfactory in real applications. We argue that index interpolation is fairly useful to resolve this problem. The index interpolation performs subsequence matching by selecting the most appropriate one from multiple indexes built on windows of their inherent sizes. For index interpolation, we first decide the sites of windows for multiple indexes to be built. In this paper, we solve the problem of selecting optimal window sizes in the perspective of physical database design. For this, given a set of query sequences to be peformed in a target time-series database and a set of window sizes for building multiple indexes, we devise a formula that estimates the cost of all the subsequence matchings. Based on this formula, we propose an algorithm that determines the optimal window sizes for maximizing the performance of entire subsequence matchings. We formally Prove the optimality as well as the effectiveness of the algorithm. Finally, we perform a series of extensive experiments with a real-life stock data set and a large volume of a synthetic data set. The results reveal that the proposed approach improves the previous one by 1.5 to 7.8 times.

Patch Information based Linear Interpolation for Generating Super-Resolution Images in a Single Image (단일이미지에서의 초해상도 영상 생성을 위한 패치 정보 기반의 선형 보간 연구)

  • Han, Hyun-Ho;Lee, Jong-Yong;Jung, Kye-Dong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2018
  • In this paper, we propose a linear interpolation method based on patch information generated from a low - resolution image for generating a super resolution image in a single image. Using the regression model of the global space, which is a conventional super resolution generation method, results in poor quality in general because of lack of information to be referred to a specific region. In order to compensate for these results, we propose a method to extract meaningful information by dividing the region into patches in the process of super resolution image generation, analyze the constituents of the image matrix region extended for super resolution image generation, We propose a method of linear interpolation based on optimal patch information that is searched by correlating patch information based on the information gathered before the interpolation process. For the experiment, the original image was compared with the reconstructed image with PSNR and SSIM.

Assessment of New High-resolution Regional Climatology in the East/Japan Sea

  • Lee, Jae-Ho;Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.401-411
    • /
    • 2021
  • This study provides comprehensive assessment results for the most recent high-resolution regional climatology in the East/Japan Sea by comparing with the various existing climatologies. This new high-resolution climatology is generated based on the Optimal Interpolation (OI) method with individual profiles from the World Ocean Database and gridded World Ocean Atlas provided by the National Centers for Environmental Information (NCEI). It was generated from the recent previous study which had a primary focus to solve the abnormal horizontal gradient problem appearing in the other high-resolution climatology version of NCEI. This study showed that this new OI field simulates well the meso-scale features including closed-curve temperature spatial distribution associated with eddy formation. Quantitative spatial variability was compared to the other four different climatologies and significant variability at 160 km was presented through a wavelet spectrum analysis. In addition, the general improvement of the new OI field except for warm bias in the coastal area was confirmed from the comparison with serial observation data provided by the National Fisheries Research and Development Institute's Korean Oceanic Data Center.

Optimal Design of a Levitation Magnet for an OLED System by using Evolution Strategy (진화론적 방법을 이용한 OLED 시스템용 부상용 전자석의 최적 설계)

  • Lim, Hyoung-Woo;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.541-546
    • /
    • 2006
  • In a levitation magnet system with large air gap, numerical method is needed because analytic method cannot consider the leakage flux properly. This paper conducted an optimal design of a levitation magnet system with large air gap which was used for an OLED system, where evolution strategy was adopted for optimal design algorithm. Levitation forces near the initial design were calculated first by using finite element method to reduce the computation time. During the optimization process, levitation forces of arbitrary dimension were obtained using the interpolation of the levitation forces which were calculated previously Weight of the maget system was chosen as the object function and it was used minimized.

An Adaptive Optimization Algorithm Based on Kriging Interpolation with Spherical Model and its Application to Optimal Design of Switched Reluctance Motor

  • Xia, Bin;Ren, Ziyan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1544-1550
    • /
    • 2014
  • In this paper, an adaptive optimization strategy utilizing Kriging model and genetic algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted by the spherical covariance model is used to construct surrogate models. In order to improve the computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling points in design space. Through several iterations and gradual refinement process, the global optimal point can be found by genetic algorithm. The proposed algorithm is validated by application to the optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe attached to the lateral face of the rotor pole are optimized to reduce the torque ripple.

A Structural Design Method Using Ensemble Model of RSM and Kriging (반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1630-1638
    • /
    • 2015
  • The finite element analysis has become an essential process to investigate the structural performance in many industry fields. In addition, the computer's performance is improving rapidly, but in large design problems, there is a limit to apply the optimal design techniques. For this, it is general to introduce a metamodel based optimization technique. The method to generate an approximate model can be classified into curve fitting and interpolation, and each representative one is response surface model and kriging interpolation method. This study proposes an ensemble model made of RSM and kriging to solve a structural design problem. The suggested method is applied to the designs of two bar and automobile outer tie rod.

A Study on the Control for an Outer-hull Preprocessing Robot Using a Quaternion (쿼터니언을 이용한 선체 외판 전처리 로봇 제어에 관한 연구)

  • Chung, Won-Jee;Kim, Ki-Jung;Kim, Sung-Hyun;Lee, Choon-Man;Shin, Ki-Su;Lee, Ki-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents the study in the development of optimal working method for an outer-hull preprocessing robot using a quaternion. The out-hull preprocessing robot consists of feathering and cleaning parts. This robot should be controlled correctly for feathering work because it is to be worked on a curved plate that can result in the errors of orientation. In this paper, we propose a control algorithm between given two orientations of the out-hull preprocessing robot by using a quaternion with spherical linear interpolation. The proposed control algorithm is shown to be effective in terms of motor angles and torques when compared to a conventional Euler angle interpolation, by using both $MATLAB^{\circledR}$ and $VisualNastran4D^{\circledR}$.

Optimal Design of Flow Measurement System Using Turbine Flowmeter (터빈유량계를 이용한 유량 측정 시스템의 최적 설계)

  • Kim, Hong-Tark;Kim, Boo-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • The turbine flowmeter is selected for high precision and reproducibility at the time of flow rate measurement but causes various uncertainty factors of measurement in the difference between the standard environmental condition at calibration and the environmental condition at the site. Also, a reliable interpolation method is required for use in sections other than calibrated measurement values. Therefore, in this paper, in order to improve the reliability of the flow rate measurement, we designed and manufactured a device that accurately measures the output signal of the turbine flowmeter, interpolates the value of the calibrated result value, and corrects the temperature change in real time We confirmed the reliability of the measurement at the site to carry out the performance verification.

A Study on Numerical Optimization Method for Aerodynamic Design (공력설계를 위한 수치최적설계기법의 연구)

  • Jin, Xue-Song;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF