• 제목/요약/키워드: Optimal Experimental Design

검색결과 1,319건 처리시간 0.027초

폭발 충격 발생기구의 인체전달 충격력 및 완충시스템 해석 (Analysis of Optimal Dynamic Absorbing System Considering Human Behavior Induced by Transmitted Force)

  • 김효준;양현석;박영필;류봉조;최의중;이성배
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.64-69
    • /
    • 2002
  • In this study, the optimal dynamic isolation system for gas operated combat weapon has been investigated. For this purpose, firstly, the dynamic behavior of human induced by firing operations has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic isolation system, parameter optimization process has been performed based on the simplified isolation system under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation.

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권6호
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.

승용차용 브레이크 Tube-End의 최적설계에 관한 연구 (A Study on the Optimal Design of the Brake Tube-End for Automobiles)

  • 한규택;박정식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.53-57
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube-end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube-end is peformed by hydraulic press forming machine. In this paper, the forming processes of tube-end for automobile is analyzed and designed to make the optimal form of brake tube-end. Also, finite element analysis has been carried out using DEFORM-3D$\^$TM/ to predict the optimal shape of brake tube-end and the results obtained showed the optimal length between punch and chuck is 1.0 ∼ 1.2mm. The shape of tube-end is in good agreement with the finite element simulations and the experimental results.

  • PDF

2MW급 DFIG 최적 설계 및 성능 평가에 관한 연구 (The Performance Evaluation and the Optimal Design of 2MW DFIG)

  • 조성호;오영진;문병선;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.382-385
    • /
    • 2007
  • The optimal design and characteristic analysis of Double Fed Induction Generator(DFIG) was performed. The purpose of the paper is to verify the accuracy of design and the reliability of DFIG by experiment. A grid connection experiment is performed to confirm generating performance in wide operating range. In this experiment, 2.7MW M/G set is used. The finite element method is applied to calculate parameters and characteristic analysis of DFIG. And in order to reduce design time and efforts, Design of Experiment(DOE) is used. The experimental results are compared with the optimum design results.

  • PDF

베이지안 실험계획법의 이해와 응용 (Understanding Bayesian Experimental Design with Its Applications)

  • 이군희
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1029-1038
    • /
    • 2014
  • 본 연구에서는 베이지안 실험계획법에 대하여 논의하고 간단한 모의실험을 통하여 최적화된 베이지안 실험계획법이 어떠한 특징을 가지고 있는지 설명하였다. 실험을 설계하는 경우 연구자는 관심있는 주제가 모수추정인지 아니면 예측인지를 결정하고 사전확률과 우도함수를 기반으로 이에 맞는 사후확률을 찾아 효용함수와 결합하여 최적의 실험설계를 찾는 것이 베이지안 실험계획법의 기본 원리이다. 만일 사전적 정보가 존재하지 않는다면 무정보적 부적합 사전확률을 이용하여 실험을 설계할 수 있으며, 이는 비 베이지안적 접근방법과 일치하게 된다. 만일 모수나 예측값에 대한 사전적 정보가 존재하는 경우에는 베이지안 실험계획법이 유일한 해결 방법이다. 하지만 모형의 복잡도가 증가하게 되면, 최적해를 찾는 과정이 매우 복잡해져서 극복해야 하는 많은 문제점들이 존재하므로 향후 많은 연구가 필요한 분야이다.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계 (Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter)

  • 이창민;구현수;지상근;유동균;강정일;한상규
    • 전력전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.

사다리형 SAW 필터의 최적 설계 (Optimal Design of Ladder Type SAW Filters)

  • 노용래
    • 한국음향학회지
    • /
    • 제18권1호
    • /
    • pp.16-24
    • /
    • 1999
  • 사다리형 SAW 필터의 개발을 위해서 종래에는 설계변수 하나하나를 변화시켜 시행착오식으로 사양을 만족시키는 값을 찾아야만 하였다. 본 연구에서는 주어진 사양을 만족시킬 수 있는 사다리형 SAW 필터의 패턴을 자동으로 설계하는 최적 설계법을 개발하였다. 우선 Smith 등가회로 해석법을 이용하여 사다리형 SAW 필터용 해석 프로그램을 제작하였으며, 그 프로그램에 의한 시뮬레이션 결과를 실제 제작된 시작품의 성능과 비교해 봄으로써 타당성을 검증하였다. 이 해석 프로그램을 바탕으로 설계변수의 조정에 따른 성능변수의 변화 경향을 분석함으로써 최적 설계 알고리즘을 개발하였으며. 그 타당성 및 효용성을 기 상용화된 제품들에 대해 시험 설계해 봄으로써 증명하였다.

  • PDF

반용융 단조를 위한 유도가열용 코일설계의 최적화 및 실험적 연구 (An Optimization of Inductive Coil Design for Thixoforging and Its Experimental Study)

  • 정홍규;김남석;강충길
    • 한국주조공학회지
    • /
    • 제19권5호
    • /
    • pp.393-402
    • /
    • 1999
  • The reheating of the billet in the semi-solid state as quickly and homogeneously as possible is one of the most important aspects. From this point of view, an optimal design of the induction coil is necessary. The objective of inductive coil designsi a uniform induction heating over the length of the billet. The effect of coil length, diameter, the gap between coil surface and billet and axial position of the billet on temperature distribution of billet has been investigated. These design parameters have an important effectiveness on the electro-magnetic field. Therefore, in this study an optimal coil design to minimize electromagnetic ed effect will be proposed by defining the relationship between billet length and coil length. In particular, key point in induction heating process is focussed on optimizing the coil design with regard to the size of the heating billet and the frequency of induction heating system. After demonstrating the suitability of an optimal coil design through the FEM simulation of the induction heating process, the results of the coil design are also applied to the reheating process to obtain a fine globular microstructure. Its considered that the reheating conditions of aluminum alloys for thixoforging and a new CAE model of the induction heating process are very useful for thixoforging practitioners including induction heating ones.

  • PDF

고분자 전해질 연료전지용 분리판 최적 설계 (Optimal Design of Bipolar-Plates for a PEM Fuel Cell)

  • 한인수;정지훈;임종구;임찬;정광섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF