• Title/Summary/Keyword: Optimal Engine

Search Result 610, Processing Time 0.026 seconds

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.444-449
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) and presented in time domain.

  • PDF

A New Type of Active Engine Mount System Featuring MR Fluid and Piezostack (MR 유체와 압전스택을 특징으로 하는 새로운 형태의 능동 엔진마운트 시스템)

  • Lee, Dong-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.583-590
    • /
    • 2009
  • An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) and presented in time domain.

Development of Specific Impulse Analysis Program for a Gas Generator Cycle Rocket Engine (가스발생기 사이클 로켓엔진의 비추력 해석 프로그램 개발)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3518-3523
    • /
    • 2007
  • An analysis program of specific impulse has been developed for a gas generator cycle rocket engine. The program has been verified by comparing the published performance data of the same cycle engine with RP-1 as fuel. A model for pressure drop of regenerative cooling and film cooling mass flow rate has been suggested to satisfy the necessary cooling condition with Jet-A1 as fuel. The engine mixture ratio is defined by the film cooling mass flow rate and the core mixture ratio. The optimal condition of the combustor pressure and engine mixture ratio has been found for maximum specific impulse.

  • PDF

A Study on the Effect of Valve Timing on the Performance and Idle characteristics of 3-Cylinder LPG Engine (밸브 타이밍 변화가 3기통 LPG 엔진의 성능과 Idle 특성에 미치는 영향에 관한 연구)

  • 이지근;이한풍;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.27-34
    • /
    • 1997
  • The effects of the intake and exhaust valve timing to improve the engine performance in a spark ignition 3-cylinder LPG engine with a closed loop fuel supply system were studied. The engine torque and power have been measured using the 75kW EC-dynamometer while adjusting the optimal fuel consumption ratio with a solen- oid driver. As the results from this experiment, when intake valve opening is $12^{\circ}$ BTDC, intake valve closing is $36^{\circ}$ ABDC, exhaust valve opening is $12^{\circ}$ ATDC, and exhaust valve closing is $36^{\circ}$ BBDC respectively, the best torque characteristics in low and high speeds for a gives engine were obtained. And also we could find that the torque characteristics in low speeds were affected by the timing of exhaust valve open. An increased valve overlap by the EVC delay was ineffectual to the torque characte- ristics improvement in high speeds.

  • PDF

Optimum Design of Engine Mount System Considering Body Flexibility (차체의 유연성을 고려한 엔진마운트 최적설계)

  • 황인수;김태욱;박우선;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.319-325
    • /
    • 1997
  • As customer's demand for vehicle comfort is getting increased, vibration problem is very important issue in vehicle development. Engine is the main factor causing vehicle vibration, so that we should isolate detrimental transmitted excitation from engine. In order to solve this problem engine mounting system was properly optimized. Simulation was performed not only rigid body mode analysis but also flexible body mode analysis. We obtained the optimal locations and stiffness of engine mounts from simulation results, and had reasonable results from considering flexible body mode than only rigid body mode analysis.

  • PDF

A study on the selection of optimal marine engine and its techno- economical evaluation method (최적박용기관의 선정 및 그의 경제성 평가방법에 관한 연구)

  • 전효중;조기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.51-66
    • /
    • 1984
  • The cost percentage of engine part in the total building cost of a ship is about 30-40% and the main engine occupies about 50% of the engine part cost. For certain ships the fuel bill can be as high as about 60-70% of the total operating cost after two oil shocks and its amount for one year is nearly equivalent to her main engine price. This fact has further increased the pressure on the engine builders to develop engines of higher efficiency and better possibilities to burn further deteriorated fuel qualities. But the energy-saving plants are ordinarily more expensive and their available amount of exhaust gas energy is less and therefore, they are not always profitable and optimum systems. This paper is prepared to decide the most economical and efficient engine systems by presenting reasonable selecting and economical evaluation methods of the main engine, which is the largest single unit and the most expensive, and its auxiliaries. In order to demonstrate the application of investigated methods in a practical case, a 46, 000 DWT class bulk carrier is selected as a model ship and her main engine and its auxiliaries are selected and evaluated. The result shows that the optimum determined has one year three months POP, 0.903 IRR at a year, 4, 116, 000 dollars PW in 15 years (for 5% escalation rate of fuel cost) and 9.522 BCR for same condition, when the engine plant of a same existing ship is taken as the basis.

  • PDF

A Study on Simulation of an Water Cooling Intercooler for a Small Marine Diesel Engine (소형 선박용 디젤엔진의 수냉식 인터쿨러 해석 연구)

  • Yang, Young-Joon;Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.43-49
    • /
    • 2014
  • This study was carried out to improve the design of an intercooler for a small marine diesel engine. Diesel engines for small marine ships have mainly been developed by changing the structure of the vehicle engine. Sea water was most commonly used in the intercooler of small marine diesel engines to cool the hot air compressed by the turbocharger. In this study, the intercooler is modeled and simulated using STAR-CCM+ in order to find optimal data for the design of an intercooler. In the results, the temperature differences between the data from a numerical analysis and experimental data were $0.38^{\circ}C$ in the hot air outlet and $3.63^{\circ}C$ in the cooling water outlet. Therefore, it was confirmed that both analysis and experimental results need to be considered when designing an intercooler. A closer degree of similarity in the two datasets can improve the confidence in the design of these intercoolers.

Layout design optimization of pipe system in ship engine room for space efficiency

  • Lee, Dong-Myung;Kim, Soo-Young;Moon, Byung-Young;Kang, Gyung-Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.784-791
    • /
    • 2013
  • Recent advanced IT made layout design fast and accurate by using algorithms. Layout design should be determined by considering the position of equipment with satisfying various space constraints and its component works with optimum performance. Especially, engine room layout design is performed with mother ship data, theoretical optimal solution, design requirements and several design constraints in initial design stage. Piping design is affected by position of equipment seriously. Piping design depends on experience of designer. And also piping designer should consider correlation of equipment and efficiency of space. In this study, space evaluation method has been used to evaluate efficiency of space. And also this study suggested object function for optimal piping route, Average Reservation Index(ARI), Estimated Piping Productivity(EPP) and with modified space evaluation method. In this study, optimum pipe routing system has been developed to reflect automated piping route with space efficiency and experience of piping designer. Engine room is applied to the design of the piping in order to confirm validity of the developed system.

The Performance Test of SCR System in a Heavy-Duty Diesel Engine (대형디젤기관에 적용된 선택적 환원촉매장치 성능시험에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2008
  • Selective Catalytic Reduction is effective in the reduction of NOx emission. This research focused to evaluate the performance of a urea-SCR system and was conducted in two procedures. One is SCR reactor test using model gas in order to provide an optimal injection condition itself. In this step, some parametric study on emission temperature, space velocity, aspect ratio and the formation of urea spray were made by using flow visualization and Computation Fluid Dynamics techniques. The basic simulation results contributed in determining the layout for an actual engine test. The other is an engine performance and emission test. The urea injector was placed at the opposite direction of exhaust gases emitted into an exhaust duct and an optimal amount of a reducing agent is estimated accurately under different engine loads and speeds. Furthermore, the variation of NOx emission and applied amount of urea was investigated in terms of modes under the condition of with and without SCR, and other emissions such as PM, CO and NMHC were evaluated quantitatively as well. This research may provide fundamental data for the practical use of urea-SCR in future.