• Title/Summary/Keyword: Optimal Engine

Search Result 612, Processing Time 0.026 seconds

A Study on Marine Diesel Engine Speed Control by Application of H Control ($H_{\infty}$ 제어에 의한 박용디젤기관의 속도제어에 관한 연구)

  • 양주호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.320-328
    • /
    • 1994
  • In 1980 s to 1990 s the marine propulsion diesel engines have been developed into lower speed and longer stroke for the enegy saving (small S.F.O.C). As these new trends the conventional mechanical-hydraulic governors were not adapted to the new requirements and the digital governors have been adopted in the marine use. The digital governors usually use the control algorithms such as the PID control, optimal control, adaptive control and etc. While the engine has delay time and parameter variations these control algorithms have difficulty in considering the stability and the robustness for the model uncertainty. In this study, the $H_{\infty}$ controller design method are applied in order to design the feedback controller K(s) to the speed control of the low speed marine diesel engine, and the two-degree-of-freedom control system is constituted with $H_{\infty}$controller. By comparison of responses of the two-degree-of-freedom control system under the delay time and parameter variations is confirmed.

  • PDF

EFFECTS OF CAM PHASE AND SPARK RETARD TO INCREASE EXHAUST GAS TEMPERATURE IN THE COLD START PERIOD OF AN SI ENGINE

  • KIM D.-S.;CHO Y.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.585-590
    • /
    • 2005
  • The effects of spark timing and exhaust valve timing change on exhaust gas temperature during cold start period of an SI engine are studied through engine bench tests. The exhaust gas temperature increases when the spark timing or valve timing are retarded individually, due to late combustion or slow flame speed. Therefore, exhaust gas temperature shows a large increase when the two timings are retarded simultaneously. However, it is considered that combustion stability during cold start deteriorated under these retarded conditions. To increase exhaust gas temperature for fast warmup of catalysts while maintaining combustion stability, an optimal condition for spark and valve timing retard should be applied for the cold start period.

A Study on Manufacture of Aluminum Automotive Piston by Thixoforging (반용융 단조 공정에 의한 자동차용 알루미늄 피스톤 제조에 관한 연구)

  • Choi, Jung-Il;Kim, Jae-Hun;Park, Joon-Hong;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.136-144
    • /
    • 2006
  • Aluminum engine piston is manufactured by thixoforging according to forming variables. It is very important to find effects of forming variables on final products in thixoferging. In order to find the effects, however, many researchers and industrial technicians have depended upon too many types of experiments. In this study, the process parameters which have influences on thixofurging process of aluminum automotive engine piston are found by a statistical method and the correlation equations between the process parameters and quality of product are approximated through the surface response analysis. Forming variables such as initial solid fraction, die temperature, and compression holding time are considered fur manufacturing aluminum engine piston by thixofurging. Hardness and microstructure are inspected so that optimal forming condition is found by the statistical approach.

Modeling of Hybride Electric Vehicle Drivetrain and Development of Simulation Program (하이브리드 전기차량 동력부의 모델링 및 성능평가 프로그램 제작)

  • 김도형;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • This paper describes a hybrid dynamic system(HDS) modeling method and result for the drivertrain of a parallel hybrid electric vehicle(PHEV) which consists of a gasoline engine, an electric machine, and a continuous variable transmission (CVT) and proposes a drivetrain control system. The control system has an engine controller, a motor controller, a CVT controller and a supervisory controller for the coordination of all system. The controller keep the speed of engine wheel and the output torque within the optimal operation range based on the experimental data. We also developed a MATLAB/SIMULINK program for the performance simulation of PHEV drivetrain model and controllers and compared the simulation result with the experiment result in the recent literatures.

  • PDF

PROCEDURE FOR COMPUTER-AIDED PRELOAD SELECTION OF ENGINE CONNECTING-ROD BOLTS

  • Cho, S.S.;Chang, H.;Lee, K.W.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.319-325
    • /
    • 2007
  • Preload of critical engine bolts affects the performance and durability of engines. In modern engines that pursue higher power outputs and which are of lighter weight, it becomes more difficult to select an optimal target preload in consideration of various factors such as the role and structural characteristics of joint members, joint load, and fatigue durability of bolts and joint members. A procedure to select the bolt preload using computer-aided engineering technology, especially the finite element method, has been developed. The procedure is illustrated with connecting-rod bolts for which an appropriate preload is known. The selection criteria of target preload and the finite element modeling technique for connecting-rod bolts are also explained.

Speed Control of the Low Speed Diesel Engine by $H_{\infty}$ Controller Design Method ($H_{\infty}$ 제어기법을 이용한 저속디젤기관의 속도제어)

  • 양주호;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.63-70
    • /
    • 1993
  • In 1980's to 1990's the marine propulsion diesel engines have been developed into lower speed and longer stroke for the energy saving(small S.F.O.C.). As these new trends the convetional mechnical-hydraulic governors were not adapted to the new requirements and the digital governors have been adopted in the marine use. The digital governors usually use the control algorithms such as the PID control, optimal control, adaptive control and etc. While the engine has delay time and parameter variations these control algorithms have difficulty in considering the stability and the robustness for the model uncertainty. In this study, the $H_{\infty}$ controller design method are applied to the speed control of the low speed marine diesel engine. By comparison the $H_{\infty}$ control results with the PID control results, the validity of the $H_{\infty}$ controller under the delay time and parameter variations is confirmed.

  • PDF

A Study on the Fuel Economy Prediction Method Based on Vehicle Power Analysis of PRIUS III (프리우스 III의 차량 출력 분석에 기초한 연비 예측 방안에 관한 연구)

  • Chung, Jae-Woo;Seo, Young-Ho;Choi, Yong-Jun;Choi, Sung-Eun;Kim, Hyoung-Gu;Jung, Ki-Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.97-106
    • /
    • 2011
  • Both an optimal design of the engine operating strategy and fuel economy prediction technique for a HEV under the vehicle driving condition are very crucial for the development of vehicle fuel economy performance. Thus, in this study, engine operating characteristics of PRIUS III were analyzed with vehicle running conditions and the correlations between vehicle tractive power and fuel consumption were introduced. As a result, fuel economy performance of PRIUS III with various test modes were predicted and verified. Errors of predicted fuel economy were between -5% and -1%.

The Effect of Exhaust System Components on the Sl Engine Performance (배기구성요소가 SI기관의 성능에 미치는 영향)

  • Park Kyoungsuk;Park Sejong;Son Sungman
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.192-198
    • /
    • 2005
  • Recently, Automobile manufacturers regarding stability, economic environmental-friendly problems by the development of automobile. This reason is increasingly strict environmental regulations to lower fuel consumption and reduce emission. Designing more efficient and low emission control exhaust system results in more efficient Performance, reduced back Pressure and higher convert efficiency. Also to reduce the noise and the vibration of the automobile. According to develop variable type muffler, dual muffler and active intelligence exhaust system unit. Improvement in engine performance and fuel consumption rate, higher conversion efficiency demand information of pressure fraction and heat characteristics. To be able to determine these factor fur we experiment on each case of exhaust system unit. In this study, how back pressure is distributed in flow-through in exhaust system and how to design exhaust system flexibleness, efficiency, lower back pressure and optimal performance. This study furnish basic data for engineers, technicians.

An Experimental Study on the Clutch Type Water Pump of Diesel Passenger Vehicle for Reducing Fuel Consumption and CO2 Emission (연비 개선 및 CO2 저감을 위한 승용디젤 차량의 클러치타입 워터펌프 적용에 따른 실험적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Chang-Boke;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.123-134
    • /
    • 2012
  • A typical cooling system of an engine relies on a water pump that circulates the coolant through the system. The pump is typically driven by the crankshaft through a mechanical link with engine starting. In order to reduce the friction and warm-up time of an engine, the clutch-type water pump (CWP) was applied in 2.0 liter diesel vehicle. The clutch-type water pump can force cooling water to supply into an engine by the operation of an electromagnetic clutch equipped as the inner part of pump system. The onset of CWP is decided by temperature of cooling water and engine oil. And, the control logic for an optimal operation of the clutch-type water pump was developed and applied in engine and vehicle tests. In this study, the warm-up time was measured with the conventional water pump and clutch-type water pump in engine tests. And the emission and the fuel consumption were evaluated under NEDC mode in vehicle tests. Also, tests were carried out for the various temperature conditions starting the operation of CWP. From the results of the study, the application of CWP can improve the fuel consumption and $CO_2$ reduction by about 3%.

Influence of intake runner cross section design on the engine performance parameters of a four stroke, naturally aspirated carbureted SI engine

  • Singh, Somendra Pratap;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • The current scenario of the transportation sector reflects the urgent need to address issues such as depletion of traditional fuel reserves and ever growing pollution levels. Researchers around the world are focussing on alternatives as well as optimisation of currently employed devices to reduce the pollution levels generated by the commonly used fuels. One such optimisation involves the study of air flow within the intake manifolds of SI engines. It is a well-known fact that alterations in the air manifolds of engines have a significant impact on the engine performance parameters, fuel consumption and emission levels. Previous works have demonstrated the impacts of runner lengths, diameter, plenum volume, taper angle of distribution manifolds and other factors on in-cylinder fluid motion and engine performance. However, a static setup provides an optimal configuration only at a specific engine speed. This paper aims to investigate the variations in the same parameters on a four stroke, naturally aspirated single cylinder SI engine through varying the cross section design over the intake runner with the aid of Computational Fluid Dynamics. The system consists of segments that form the intake runner with projections on the inside that allow various permutations of the intake runner segments. The various configurations provide the optimised fluid flow characteristics within the intake manifold at specific engine speed intervals. The variations such as turbulence, air fuel mixing are analysed using the three dimensional CFD software FLUENT. The results can be used further for developing an automated or manually adjustable intake manifold.