• Title/Summary/Keyword: Optimal Division Model

Search Result 465, Processing Time 0.035 seconds

Fuzzy inference system and Its Optimization according to partition of Fuzzy input space (퍼지 입력 공간 분할애 따른 퍼지 추론과 이의 최적화)

  • Park, Byoung-Jun;Yoon, Ki-Chan;Oh, Sung-Kwun;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.657-659
    • /
    • 1998
  • In order to optimize fuzzy modeling of nonlinear system, we proposed a optimal fuzzy model according to the characteristic of I/O relationship, HCM method, the genetic algorithm, and the objective function with weighting factor. A conventional fuzzy model has difficulty in definition of membership function. In order to solve its problem, the premise structure of the proposed fuzzy model is selected by both the partition of input space and the analysis of input-output relationship using the clustering algorithm. The premise parameters of the fuzzy model are optimized respectively by the genetic algorithm and the consequence parameters of the fuzzy model are identified by the standard least square method. Also, the objective function with weighting factor is proposed to achieve a balance between the performance results for the training and testing data.

  • PDF

An EMQ Model with Rework (재작업이 수반되는 경우에서의 경제적 생산량 결정)

  • Kim, Chang Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.2
    • /
    • pp.173-179
    • /
    • 2005
  • This paper presents an extended EMQ model which determines an optimal production quantity for a single stage production system when defective items are stochastically produced in the production process and they are re-processed in the rework process to convert them into non-defectives. Through the mathematical modeling, an optimal solution minimizing the average cost per unit time and minimum average cost as well as some properties are derived. It can be shown that each of the existing models is a special case of the proposed model under some conditions. Numerical experiment is carried out to examine the behavior of the proposed model and support properties derived.

Size selectivity by alter the slope length and angle of coonstrip shrim (Pandalus hypsinotus Brandt) pot using in Hokkaido, Japan (일본 북해도 도화새우통발의 경사면 길이와 각도 변화에 따른 입롱시 크기선택성)

  • Kim, Seong-Hun;Lee, Ju-Hee;Kim, Hyung-Seuk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.4
    • /
    • pp.273-281
    • /
    • 2008
  • In this study, the effect of slope length and angle at the entrance to fishing pots on the size of captured shrimp was examined to determine the optimal design of pots for use in Hokkaido, Japan. The purpose of the current study was to optimize the design of shrimp pots to allow greater control over the size of captured individuals for the purposes of shrimp resource management. Tank experiments were conducted to determine the optimal slope length and slope angle by analyzing the sizes of shrimp entering 10 model pots with combinations of five different slope lengths on slope angle of current shrimp pot, and five different angles on slope length of current shrimp pot. The results showed that, as the slope length of the pot increased, the size of individuals which entered the pot increased. In addition, as the slope angle was elevated in each of the five different slope angle treatments, the size of individuals entering was also increased.

Estimating Optimal Harvesting Production of Yellow Croaker Caught by Multiple Fisheries Using Hamiltonian Method (해밀토니안기법을 이용한 복수어업의 참조기 최적어획량 추정)

  • Nam, Jong-Oh;Sim, Seong-Hyun;Kwon, Oh-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • This study aims to estimate optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the offshore Stow Net and the offshore Gill Net fisheries using the current value Hamiltonian method and the surplus production model. As analyzing processes, firstly, this study uses the Gavaris general linear model to estimate standardized fishing efforts of yellow croaker caught by the above multiple fisheries. Secondly, this study applies the Clarke Yoshimoto Pooley(CY&P) model among the various exponential growth models to estimate intrinsic growth rate(r), environmental carrying capacity(K), and catchability coefficient(q) of yellow croaker which inhabits in offshore area of Korea. Thirdly, the study determines optimal harvesting production, fishing efforts, and stock levels of yellow croaker using the current value Hamiltonian method which is including average landing price of yellow croaker, average unit cost of fishing efforts, and social discount rate based on standard of the Korean Development Institute. Finally, this study tries sensitivity analysis to understand changes in optimal harvesting production, fishing efforts, and stock levels of yellow croaker caused by changes in economic and biological parameters. As results drawn by the current value Hamiltonian model, the optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the multiple fisheries were estimated as 19,173 ton, 101,644 horse power, and 146,144 ton respectively. In addition, as results of sensitivity analysis, firstly, if the social discount rate and the average landing price of yellow croaker continuously increase, the optimal harvesting production of yellow croaker increases at decreasing rate and then finally slightly decreases due to decreases in stock levels of yellow croaker. Secondly, if the average unit cost of fishing efforts continuously increases, the optimal fishing efforts of the multiple fisheries decreases, but the optimal stock level of yellow croaker increases. The optimal harvest starts climbing and then continuously decreases due to increases in the average unit cost. Thirdly, when the intrinsic growth rate of yellow croaker increases, the optimal harvest, fishing efforts, and stock level all continuously increase. In conclusion, this study suggests that the optimal harvesting production and fishing efforts were much less than actual harvesting production(35,279 ton) and estimated standardized fishing efforts(175,512 horse power) in 2013. This result implies that yellow croaker has been overfished due to excessive fishing efforts. Efficient management and conservative policy on stock of yellow croaker need to be urgently implemented.

The Study on a Reservoir Environment Development Method of Coast Small Islands using 0-1 Integer Programming (0-1 정수 계획법을 이용한 해양 도서지역 상수원 환경 개발 방법에 관한 연구)

  • Joo, K.S.;Park, S.H.
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.127-132
    • /
    • 2007
  • This study is to determine an optimal reservoir among many alternative proposals in order to obtain the maximized efficiency under the limited budget. There are many alternative proposals which deal with problems to assign reservoir such as water conversion establishment construction, subterranean water, reservoir, submarine pipeline, water boat, and marine water saving base construction. In this paper, the new model to assign the most reasonable alternative is introduced using 0-1 integer programming. This proposed model has not been applied in the optimal reservoir selection problem yet. This paper will contribute to determine the most reasonable alternative to minimize budget under constraints. Also, this proposal model can be applied to other reservoir selection problem in other regions.

  • PDF

Development of Optimal Decision-Making System for Rehabilitation of Water Distribution Systems Divided by small Division (상수관망의 구역별 최적개량 의사결정 시스템의 개발)

  • Baek Chun-Woo;Kim Seok-Woo;Kim Eung-Seok;Kim Joong-Hoon;Park Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.545-552
    • /
    • 2006
  • The purpose of this study is to develop an optimal, long-term planning model for improvement of water distribution networks. The water distribution system is divided into sub-zones and the decision of improvement plan is made for each sub-zone. Costs for replacement, rehabilitation and repair, benefits including reduced pumping and leakage costs, and hydraulic reliability are considered to make optimal decision for improvement planning of water network. Harmony search algorithm is applied to optimize the system and hydraulic analysis model EPANET is interfaced with the optimal decision model to check the hydraulic reliability, The developed model is applied to actual water distribution system in Daegu-city, South Korea. The new model which use durability, conveyance and cost as a decision variable is different from existing methods which use only burying period and pipe type and can be used as optimal decision making system for water distribution network.

Economic-Statistical Design of Double Sampling T2 Control Chart under Weibull Failure Model (와이블 고장모형 하에서의 이중샘플링 T2 관리도의 경제적-통계적 설계 (이중샘플링 T2 관리도의 경제적-통계적 설계))

  • Hong, Seong-Ok;Lee, Min-Koo;Lee, Jooho
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.471-488
    • /
    • 2015
  • Purpose: Double sampling $T^2$ chart is a useful tool for detecting a relatively small shift in process mean when the process is controlled by multiple variables. This paper finds the optimal design of the double sampling $T^2$ chart in both economical and statistical sense under Weibull failure model. Methods: The expected cost function is mathematically derived using recursive equation approach. The optimal designs are found using a genetic algorithm for numerical examples and compared to those of single sampling $T^2$ chart. Sensitivity analysis is performed to see the parameter effects. Results: The proposed design outperforms the optimal design of the single sampling $T^2$ chart in terms of the expected cost per unit time and Type-I error rate for all the numerical examples considered. Conclusion: Double sampling $T^2$ chart can be designed to satisfy both economic and statistical requirements under Weibull failure model and the resulting design is better than the single sampling counterpart.

A Decision-Supporting Model for Rehabilitation of Old Water Distribution Systems

  • Kim, Joong-Hoon;Geem, Zong-Woo;Lee, Hyun-dong;Kim, Seong-Han
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.31-40
    • /
    • 1997
  • Flow carrying capacity of water distribution systems is getting reduced by deterioration of pipes in the systems. The objective of this paper is to present a managerial decision-making model for the rehabilitation of water distribution systems with a mininum cost. The decisions made by the model also satisfy the requirements for discharge and pressure at demanding nodes in the systems. Replacement cost, pipe break repair cost, and pumping cost are considered in the economic evaluation of the decision along with the break rate and the interest rate to determine the optimal replacement time for each pipe. Then, the hydraulic integrity of the water distribution system is checked for the decision by a pipe network simulator, KYPIPE, if discharge and pressure requirements are satisfied. In case the system does not satisfy the hydraulic requirements, the decision made for the optimal replacement time is revised until the requirments are satisfied. The model is well applied to an existing water distribution system, the Seoul Metropolitan Water Supply System (1st Phase). The results show that the decisions for the replacement time determined by the economic analysis are accepted as optimal and hydraulic integrity of the system is in good condition.

  • PDF

OPTIMIZATION OF PARAMETERS IN MATHEMATICAL MODELS OF BIOLOGICAL SYSTEMS

  • Choo, S.M.;Kim, Y.H.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.355-364
    • /
    • 2008
  • Under pathological stress stimuli, dynamics of a biological system can be changed by alteration of several components such as functional proteins, ultimately leading to disease state. These dynamics in disease state can be modeled using differential equations in which kinetic or system parameters can be obtained from experimental data. One of the most effective ways to restore a particular disease state of biology system (i.e., cell, organ and organism) into the normal state makes optimization of the altered components usually represented by system parameters in the differential equations. There has been no such approach as far as we know. Here we show this approach with a cardiac hypertrophy model in which we obtain the existence of the optimal parameters and construct an optimal system which can be used to find the optimal parameters.

  • PDF

Optimization of Medium Composition for Production of the Antioxidant Substances by Bacillus polyfermenticus SCD Using Response Surface Methodology

  • Lee, Jang-Hyun;Chae, Mi-Seung;Choi, Gooi-Hun;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.959-964
    • /
    • 2009
  • Production of the antioxidant substances by Bacillus polyfermenticus SCD was investigated using shake-flask fermentation. The one-factor-at-a-time method was first employed to determine the key ingredients for optimal medium composition, then further investigation of the medium composition was performed using response surface methodology (RSM). The antioxidant activity was measured using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assays. After screening various elements, fructose, tryptone, and $MgSO_4\;7H_2O$ were chosen as the main factors for study in the statistical experimental design. Central composite design (CCD) was then used to determine the optimal concentrations of these 3 components. Under the proposed optimized medium containing 2.8% fructose, 1.34% tryptone, 0.015% $MgSO_4\;7H_2O$), 0.5% NaCl, and 0.25% $K_2HPO_4$, the model predicted an antioxidant activity of 80.5% ($R^2=0.9421$. The actual experimental results were in agreement with the prediction.