The performance of an intelligent classifier for detecting malwares added to multimedia contents based on machine learning is highly dependent on the properties of feature set. Especially, in order to determine the malicious code in real time the size of feature set should be as short as possible without reducing the accuracy. In this paper, we introduce an optimal feature selection method to satisfy both high detection rate and the minimum length of feature set against the feature set provided by PEFeatureExtractor well known as a feature extraction tool. For the evaluation of the proposed method, we perform the experiments using Windows Portable Executables 32bits.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.21
no.7
/
pp.43-52
/
2022
Design of a controller for a high-precision servo control system has been a popular topic while finding optimal parameters for multiple controllers is still a challenging subject. In this paper, we propose a practical scheme to optimize multi-parameters for the robust servo controller design by introducing a new cost function and optimization scheme. The proposed design method provides a simple and practical tool for the systematic servo design to reduce the control error with guaranteeing robust stability of the overall system. The reduction of the position error by 24% along with a faster convergence rate is demonstrated using a typical hard disk drive servo controller with 41 parameters.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.1
/
pp.1-5
/
2005
The purpose of reinforcement learning is to maximize rewards from environment, and reinforcement learning agents learn by interacting with external environment through trial and error. Q-Learning, a representative reinforcement learning algorithm, is a type of TD-learning that exploits difference in suitability according to the change of time in learning. The method obtains the optimal policy through repeated experience of evaluation of all state-action pairs in the state space. This study chose n-Queen problem as an example, to which we apply reinforcement learning, and used Q-Learning as a problem solving algorithm. This study compared the proposed method using reinforcement learning with existing methods for solving n-Queen problem and found that the proposed method improves the convergence rate to the optimal solution by reducing the number of state transitions to reach the goal.
Journal of the Korean Society of Industry Convergence
/
v.26
no.5
/
pp.855-866
/
2023
With the rapid advancement and sophistication of defense weapon systems, the government, military, and the defense industry have conducted various innovative attempts to improve the efficiency of post-logistics support(PLS). The Ministry of Defense has mandated RAM-C(Reliability, Availability, and Maintainability-Cost) analysis as a requirement according to revised Total Life Cycle System Management Code of Practice in May 2022. Especially, for the project budget forecast of new PBL(Performance Based Logistics) business contacts, RAM-C is recognized as an obligatory factor. However, relevant entities have not officially provided guidelines or manuals for RAM-C analysis, and each defense contractor conducts RAM-C analysis with different standards and methods to win PBL-related business contract. Hence, this study aims to contribute to the generalization of the analysis procedure by presenting a cost analysis case based on RAM-C for the supply of military depot maintenance PBL project. This study presents formulas and procedures to determine requirements of military depot maintenance PBL project for repair parts supply. Moreover, a sensitivity analysis was conducted to find the optimal cost/utilization ratio. During the process, a correlation was found between supply delay and total cost of ownership as well as between cost variability and utilization rate. The analysis results are expected to provide an important basis for the conceptualization of the cost analysis for the supply of military depot maintenance PBL project and are capable of proposing the optimal utilization rate in relation to cost.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.8
no.2
/
pp.49-55
/
2008
To address the convergence issue of power control algorithms, a number of algorithms have been developed hat shape the dynamics of up-link power control for cellular network. Power algorithms based on fixed point iterations can be accelerated by the use of various methods, one of the simplest being the use of Newton iterations, however, this method has the disadvantage which not only needs derivatives of the cost function but also may be weak to noisy environment. we showed performance of the power control schemes to solve the fixed point problem under static or stationary channel. They proved goof performance to solve the fixed point problem due to their predictor based optimal control and quadratic convergence rate. Here, we apply the proposed power control schemes to the problem of the dynamic channel or to dynamic time varying link gains. The rigorous simulation results demonstrated the validity of our approach.
Journal of the Korean Society of Industry Convergence
/
v.22
no.6
/
pp.599-606
/
2019
In this study, it was aimed to find the optimal cutting conditions by measuring and analyzing the dimensional accuracy of SNCM 616 alloy steel, which is commonly used in industry, by precision hole machining using Ø25 mm and 8-blade reamer in CNC-HBM to be. As a result of the roundness and dimensional accuracy, it was found that the spindle speed had a significant effect on the dimensional tolerance value. Optimum cutting conditions are spindle speed 25 rpm and feed rate 20 mm / min.
Journal of information and communication convergence engineering
/
v.10
no.3
/
pp.315-320
/
2012
In H.264/AVC, the first frame of a group of pictures (GOP) is encoded in intra mode which generates a large number of bits. The number of bits for the I-frame affects the qualities of the following frames of a GOP since they are encoded using the bits remaining among the bits allocated to the GOP. In addition, the first frame is used for the inter mode encoding of the following frames. Thus, the initial quantization parameter (QP) affects the following frames as well as the first frame. In this paper, an adaptive peak signal to noise ratio (PSNR)-based initial QP determination algorithm is presented. In the proposed algorithm, a novel linear model is established based on the observation of the relation between the initial QPs and PSNRs of frames. Using the linear model and PSNR results of the encoded GOPs, the proposed algorithm accurately estimates the optimal initial QP which maximizes the PSNR of the current GOP. It is shown by experimental results that the proposed algorithm predicts the optimal initial QP accurately and thus achieves better PSNR performance than that of the existing algorithm.
Journal of the Korean Society of Industry Convergence
/
v.9
no.2
/
pp.111-116
/
2006
This study provides the optimal conditions treating with the coagulation process and the other chemical treatment processes for dyeing wastewater, especially various dyeing complex wastewater. The results are shown as follows: 1. Optimum reaction condition of pH for ferrous sulfate was the range of 9 to 12. And when 3,000ppm(mg/l) of ferrous sulfate was dosed, the maximum $COD_{Mn}$ removal rate was approximately 40%. 2. In case of ferrous chloride and Bittern as coagulants, optimum pH range was 10 to 11. And maximum $COD_{Mn}$ removal rate was approximately 46% to 50% for dose of 2,000ppm(mg/l) to 6,000 ppm. 3. It is confirmed that the activated sludge process following coagulation precipitation method provides better treatment efficiency than the coagulation precipitation method following the activated sludge process. 4. The purpose of this study was to produce CGF (Cyanoguanidineformaldehyde resin) by organic compounds. 5. The complex coagulation agent by this study is the most economical coagulant with Alum(aluminum sulfate) and the removal efficiency is approximately 54% with 1,000ppm(mg/l) of pH range 6 to 7.
Journal of the Korean Society of Industry Convergence
/
v.25
no.3
/
pp.467-476
/
2022
The Bank of Korea raised the benchmark interest rate by a quarter percentage point to 1.75 percent per year, and analysts predict that South Korea's policy rate will reach 2.00 percent by the end of calendar year 2022. Furthermore, because market volatility has been significantly increased by a variety of factors, including rising rates, inflation, and market volatility, many investors have struggled to meet their financial objectives or deliver returns. Banks and financial institutions are attempting to provide Robo-Advisors to manage client portfolios without human intervention in this situation. In this regard, determining the best hyper-parameter combination is becoming increasingly important. This study compares some activation functions of the Deep Deterministic Policy Gradient(DDPG) and Twin-delayed Deep Deterministic Policy Gradient (TD3) Algorithms to choose a sequence of actions that maximizes long-term reward. The DDPG and TD3 outperformed its benchmark index, according to the results. One reason for this is that we need to understand the action probabilities in order to choose an action and receive a reward, which we then compare to the state value to determine an advantage. As interest in machine learning has grown and research into deep reinforcement learning has become more active, finding an optimal hyper-parameter combination for DDPG and TD3 has become increasingly important.
Wu, Zhilu;Jiang, Lihui;Ren, Guanghui;Wang, Gangyi;Zhao, Nan;Zhao, Yaqin
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.5
/
pp.1768-1789
/
2015
The maximal signal-to-interference-plus-noise ratio (Max-SINR) algorithm for interference alignment (IA) has received considerable attention for its high sum rate achievement in the multiple-input multiple-output (MIMO) interference channel. However, its complexity may increase dramatically when the number of users approaches the IA feasibility bound, and the number of iterations and computational time may become unacceptable. In this paper, we study the properties of the Max-SINR algorithm thoroughly by presenting theoretical insight into the algorithm and by providing the potential of reducing the overall computational cost. Furthermore, a novel IA algorithm based on the principle direction search is proposed, which can converge more rapidly than the conventional Max-SINR method. In the proposed algorithm, it searches along the principle direction, which is found to approximately point to the convergence values, and can approach the convergence solutions rapidly. In addition, the closed-form solution of the optimal step size can be formulated in the sense of minimal interference leakage. Simulation results demonstrate that the proposed algorithm outperforms the conventional minimal interference leakage and Max-SINR algorithms in terms of the convergence rate while guaranteeing the high throughput of IA networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.