• Title/Summary/Keyword: Optimal Control Technology

Search Result 1,623, Processing Time 0.033 seconds

Control System Design of Electric Operated Adjustable Bed for Body Posture Stability (체간 안정성을 위한 전동침대의 제어시스템 설계)

  • Bae, J.H.;Moon, I.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.55-62
    • /
    • 2012
  • In this paper we propose a control system to preserve the interior angle between back section and upper leg section to be larger than 90 degrees using a single limit switch. To design the control system we analyze the kinematics of actuation mechanisms for the back section and the upper leg section, and find out an optimal solution for the controller design. Using a prototype control system we perform experiments to test the controller performance, and show that the interior angle between the back section and the upper leg section is always preserved larger than 90 degree. From the experimental results, we show the proposed control system is feasible to keep the body posture stability.

  • PDF

Real-time Robotic Vision Control Scheme Using Optimal Weighting Matrix for Slender Bar Placement Task (얇은 막대 배치작업을 위한 최적의 가중치 행렬을 사용한 실시간 로봇 비젼 제어기법)

  • Jang, Min Woo;Kim, Jae Myung;Jang, Wan Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2017
  • This paper proposes a real-time robotic vision control scheme using the weighting matrix to efficiently process the vision data obtained during robotic movement to a target. This scheme is based on the vision system model that can actively control the camera parameter and robotic position change over previous studies. The vision control algorithm involves parameter estimation, joint angle estimation, and weighting matrix models. To demonstrate the effectiveness of the proposed control scheme, this study is divided into two parts: not applying the weighting matrix and applying the weighting matrix to the vision data obtained while the camera is moving towards the target. Finally, the position accuracy of the two cases is compared by performing the slender bar placement task experimentally.

Positioning and vibration suppression for multiple degrees of freedom flexible structure by genetic algorithm and input shaping

  • Lin, J.;Chiang, C.B.
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.347-365
    • /
    • 2014
  • The main objective of this paper is to develop an innovative methodology for the vibration suppression control of the multiple degrees-of-freedom (MDOF) flexible structure. The proposed structure represented in this research as a clamped-free-free-free truss type plate is rotated by motors. The controller has two loops for tracking and vibration suppression. In addition to stabilizing the actual system, the proposed feedback control is based on a genetic algorithm (GA) to seek the primary optimal control gain for tracking and stabilization purposes. Moreover, input shaping is introduced for the control scheme that limits motion-induced elastic vibration by shaping the reference command. Experimental results are presented, demonstrating that, in the control loop, roll and yaw angles track control and elastic mode stabilization. It was also demonstrated that combining the input shaper with the proportional-integral-derivative (PID) feedback method has been shown to yield improved performance in controlling the flexible structure system. The broad range of problems discussed in this research is valuable in civil, mechanical, and aerospace engineering for flexible structures with MDOM motion.

Petri Net Modeling and Analysis for Periodic Job Shops with Blocking

  • Lee, Tae-Eog;Song, Ju-Seog
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.314-314
    • /
    • 1996
  • We investigate the scheduling problem for periodic job shops with blocking. We develop Petri net models for periodic job shops with finite buffers. A buffer control method would allow the jobs to enter the input buffer of the next machine in the order for which they are completed. We discuss difficulties in using such a random order buffer control method and random access buffers. We thus propose an alternative buffer control policy that restricts the jobs to enter the input buffer of the next machine in a predetermined order. The buffer control method simplifies job flows and control systems. Further, it requires only a cost-effective simple sequential buffer. We show that the periodic scheduling model with finite buffers using the buffer control policy can be transformed into an equivalent periodic scheduling model with no buffer, which is modeled as a timed marked graph. We characterize the structural properties for deadlock detection. Finally, we develop a mixed integer programming model for the no buffer problem that finds a deadlock-free optimal sequence that minimizes the cycle time.

  • PDF

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

A Design of Intelligent Information System for Greenhouse Cultivation (시설재배를 위한 지능정보시스템의 설계)

  • Oh, Se-jong
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.183-190
    • /
    • 2017
  • Recently the scale and area of greenhouse cultivation have been enlarged in Korea, and its importance in domestic agriculture is being increased. According to these situation, environment control systems are widely used in greenhouses. Even though development of greenhouse facilities and control devices, cultivation skill using them is in lower level more than european countries and Japan. In this study, we propose intelligent information system based on information-communication technology that supports environment control systems. Proposed system is able to support to maintain optimal environment for plant growth using data from environment control system, and also give useful knowledge for cultivation by active way. Furthermore, it estimates future status of plant growth, and suggest best strategy of environment control for current stage.

A Design of Architecture for Federating between NRNs and Determination Optimal Path

  • Park, Jinhyung;Cho, Hyunhun;Lee, Wonhyuk;Kim, Seunghae;Yun, Byoung-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.678-690
    • /
    • 2014
  • The current networks do not disclose information about a management domain due to scalability, manageability and commercial reasons. Therefore, it is very hard to calculate an optimal path to the destination. Also, due to poor information sharing, if an error occurs in the intermediate path, it is very difficult to re-search the path and find the best path. Hence, to manage each domain more efficiently, an architecture with top-level path computation node which can obtain information of separate nodes are highly needed This study aims to investigate a federation of a united network around NRN(National Research Network) that could allow resource sharing between countries and also independent resource management for each country. Considering first the aspects that can be accessed from the perspective of a national research network, ICE(Information Control Element) and GFO(Global Federation Organizer)-based architecture is designed as a top-level path computation element to support traffic engineering and applied to the multi-domain network. Then, the federation for the independent management of resources and resource information sharing among national research networks have been examined.

Determination of Identifiable Parameters and Selection of Optimum Postures for Calibrating Hexa Slide Manipulators

  • Park, Jong-Hyuck;Kim, Sung-Gaun;Rauf, Abdul;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2737-2742
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. While the Cartesian postures are measured completely, all of the geometric parameters can be identified to their true values. With partial pose measurements, however, few geometric parameters may not be identifiable and effectiveness of the calibration results may vary significantly within the workspace. QR decomposition of the identification Jacobian matrix can reveal the non-identifiable parameters. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type paralle manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF

Optimal scheduling for multi-product batch processes under consideration of non-zero transfer times and set-up times

  • Jung, Jae-Hak;Lee, In-Beum;Yang, Dae-Ryook;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.30-35
    • /
    • 1993
  • Simple recurrence relations for calculating completion times of various storage polices (unlimited, intermediate storages(FIS), finite intermediate storages(FIS), no intermediate storage(NIS), zero wait(ZW) for serial multi-product multi-unit processes are suggested. Not only processing times but also transfer times, set-up (clean-up) times of units and set-up times of storages are considered. Optimal scheduling strategies with zero transfer times and zero set-up times had been developed as a mixed integer linear programniing(MILP) formulation for several intermediate storage policies. In this paper those with non-zero transfer times, non-zero set-up times of units and set-up times of storages are newly proposed as a mixed integer nonlinear programming(MINLP) formulation for various storage polices (UIS, NIS, FIS, and ZW). Several examples are tested to evaluate the robustness of this strategy and reasonable computation times.

  • PDF

The transient analysis for choosing the optimal SCR ratings of AC3 utilization category testing equipment used for electrical durability test for magnetic switch (IEC60947-4에 따른 전자개폐기 전기적 수명시험설비의 과도현상을 고려한 SCR최적 정격선정에 대한 연구)

  • Ryu Haeng Soo;Kim Kab Dong;Han Gyu Hwan
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.354-356
    • /
    • 2004
  • This paper is the transient analysis for choosing the optimal SCR ratings of AC3 utilization category testing equipment(AC3 TE) used for electrical durability test for magnetic switch according to IEC60947-4 Annex B by utilizing EMTP -ATPDraw. Magnetic contactor closes and opens the motor load with ON/OFF switch of electronic contactor. It is also used for protecting and controlling the load. Magnetic contactor detects the over-current flow in the load with a over-current relay and disconnects the load by opening its control power. The key cost of AC3 TE is the SCR ratings. The more decreases SCR ratings, the more decreased the cost is, but it is impossible to ensure the reliability. On the other hand, the more increases SCR ratings, the more increased the cost is. Thereupon, in this paper after the testing circuit is simulated by using EMTP-ATPDraw the SCR ratings will be applied in order to guarantee the testing reliability of PT&T(Power Testing and Technology institute in LG Industrial Systems Co.,Ltd.).

  • PDF