• Title/Summary/Keyword: Optimal Control Technology

Search Result 1,619, Processing Time 0.026 seconds

Noise Reduction of Muffler by Optimal Design

  • Oh, Jae-Eung;Cha, Kyung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.947-955
    • /
    • 2000
  • This paper proposes an optimal design scheme to improve the muffler's capacity of noise reduction of the exhaust system by combining the Taguchi method and a fractional factorial design. As a measuring tool for the performance of a muffler, the performance prediction software which is developed by Oh, Lee and Lee (1996) is used. In the first stage of a design, the length and radius of each component of the current muffler system are selected as control factors. Then, the $L_{18}$ table of orthogonal arrays is adopted to extract the effective main factors. In the second stage, the fractional factorial design is adopted to take interactions into consideration, which the $L_{18}$ table of orthogonal arrays can not consider. For an optimal design, the $L_{27}$ table of orthogonal arrays with main and interaction effects is proposed and the noise factors such as temperature, background noise and humidity are analyzed for more efficient design simultaneously.

  • PDF

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

A Study on the Optimal Design of the Gate Leaf of a Dam (DAM 수문의 최적설계에 관한 사찰)

  • 최상훈;한응교;양인홍
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 1991
  • The design theory of roller gate has been systematized laying more emphasis on practical formulas than theoretical ones and the design procedure of the existing gate facilites is reviewed and analyaed on economical viewpoint and safety factor. The design theory of timoshenko, the thechnical standards for hydraulic gate and penstock of Japan, and the design standards for waterworks structures of Germany are applied to the study of optimal design of a gate leaf. In this study, gate leaf which is now being operated for water control at the seadike, estuary dam and reservoir dam are adopted as a mode, and a new design method by the computer is proposed through the variation of design elements within practical ranges. As a result, safety factor and economical design can be made by using T-beams to the horizontal and vertical beam of the gate leaf instead of H-beams used in the existing seadike roller gate at Asan, and total weight of gate leaf is reduced by the present optimization.

  • PDF

Design of the Electromagnet of Maglev using Optimization Algorithm Based on Bacterial Survival Strategies (박테리아 생존전략기반 최적화 기법을 이용한 자기부상 이송장치의 전자석 설계)

  • Cho, Jae-Hoon;Kim, Young-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1045-1051
    • /
    • 2016
  • This paper introduces a new optimal design method using a bacterial survival strategies for a ectromagnet of Maglev transportation vehicle. Usually, an electromagnetic suspension which has more advantages than electro dynamic suspension is used in Maglev systems. However, the structural constraints must be considered in the optimal design of an electromagnet for electromagnetic suspend system. In this paper, the optimal design method of a electromagnet based on a bacterial survival strategies optimization algorithm to design the electromagnet satisfying the structural constraints. The effectiveness of the proposed method was verified by Matlab simulations and the simulation results show that the proposed method is more efficient than conventional methods.

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.

An Algorithm on Optimal Placement Decision of Automatic Switches for 6 Sections/3 Links Configuration in DAS

  • Lim, Il-Hyung;Zhang, Wen-Hao;Trirohadi, Hamsyah;Choi, Myeon-Song;Lee, Seung-Jae;Ha, Bok-Nam
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.328-333
    • /
    • 2011
  • A Distribution Automation System (DAS) is operated by monitoring and control of the field statesusing Feeder Remote Terminal Units (FRTUs) installed together withautomatic switches.An optimal placement of automatic switchescan enhanceefficiencyof the operation and restoration, and improve the power supply reliability ofa DAS.This paper proposes an algorithm to decide the optimal placement of automatic switches ina DAS.The proposed algorithm was developed ona DAS witha six sections and three links configuration. The proposed algorithm was provided inaneight-feeder power distribution system.

A Study on Heat Transfer Characteristics of H-120 Class Fire Damper for Offshore Structures (해양플랜트용 H-120급 방화 댐퍼의 열전달 특성에 관한 연구)

  • Jang, Sung-Cheol;Lee, Jong-Hwan;Lee, Chi-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.19-24
    • /
    • 2014
  • This research conducts CAE analysis of fire damper and design of damper controlling system. The prediction of the design heat transfer was done the answer of fire damper could be obtained by using continuity equation of damper controlling and orthogonal array. Through the design analysis of optimal offshore construction, new fire damper of H-120 class was designed. Accordingly, this equipment will be tested in actual offshore construction. Finally, we could obtain fire damper of optimal design with orthogonal array. With the CAE results of this research, The offshore plant will obtain eco-friendly fire damper with a method to select optimal condition of fire damper with orthogonal array.

A Study on the Optimal Operation Schemes for Large-scale Wind Farm (대규모 풍력 발전 단지의 최적운영 방안 연구)

  • Jeon, Young-Soo;Choy, Young-Do
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.365-371
    • /
    • 2009
  • This paper studies the optimal operation schemes for large scale wind farm. With few operation experiences and fundamental technology for the wind farm, there is a difficult to establish the grid code which is the standard for connecting wind farm to power system. Analysis of the grid code and the operation of other nations for wind farm is used to propose the optimal operation schemes for large-scale wind farm considering the characteristic of our power system, by analyzing the influence of power system by wind farm at Cheju island.

Economic Power Dispatch with Discontinuous Fuel Cost Functions using Improved Parallel PSO

  • Mahdad, Belkacem;Bouktir, T.;Srairi, K.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • This paper presents an improved parallel particle swarm optimization approach (IPPSO) based decomposed network for economic power dispatch with discontinuous fuel cost functions. The range of partial power demand corresponding to the partial output powers near the global optimal solution is determined by a flexible decomposed network strategy and then the final optimal solution is obtained by parallel Particle Swarm Optimization. The proposed approach tested on 6 generating units with smooth cost function, and to 26-bus (6 generating units) with consideration of prohibited zone effect, the simulation results compared with recent global optimization methods (Bee-OPF, GA, MTS, SA, PSO). From the different case studies, it is observed that the proposed approach provides qualitative solution with less computational time compared to various methods available in the literature survey.

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.