• Title/Summary/Keyword: Optimal Control Gain

Search Result 334, Processing Time 0.033 seconds

Optimal Dietary Ratio of Spray Dried Plasma Protein (SDPP) and Dried Porcine Solubles (DPS) in Improving Growth Performance and Immune Status in Pigs Weaned at 21 Days of Age

  • Kim, J.D.;Hyun, Y.;Sohn, K.S.;Kim, T.J.;Woo, H.J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.338-345
    • /
    • 2001
  • An experiment was conducted to determine the optimal inclusion ratio of spray dried plasma protein (SDPP) and dried porcine solubles (DPS) for maximizing growth and improving immunity in weaned pigs. One hundred-fifty male (barrow) pigs were allotted in a completely randomized block design. Treatments were as follows: 1) control (6% SDPP), 2) S6D6 (6% SDPP+6% DPS), 3) S6D3 (6% SDPP+3% DPS), 4) S3D6 (3% SDPP+6% DPS) and 5) S3D3 (3% SDPP+3% DPS). Each treatment has 6 replicates with 5 pigs per replicate. Average daily gain (ADG) and average daily feed intake (ADFI) were highest, but not significantly different when pigs were fed a diet contained 6% SDPP and DPS from d 0 to 7 after weaning. Pigs fed the S6D3 diet showed better weight gain and feed intake than other treatments, especially compared with pigs fed S3D6 diet (p<0.05) from d 8 to 21 after weaning. For the overall experimental period, pigs fed the S6D3 diet showed the best improvement in ADG and ADFI. The digestibilities of dry matter (DM) and crude protein (CP) were higher in pigs fed the S6D6 diet than other diets from d 0 to 7 after weaning. However, pigs fed S6D3 diet showed higher DM, CP and essential amino acids (except methionine and arginine) digestibilities than pigs fed other diets from d 8 to 21 after weaning, although there was no significant difference. From d 8 to 21 after weaning, threonine, valine, isoleucine and leucine digestibilites were higher in S6D6 group, and phenyalanine, histidine, lysine and arginine digestibility were higher in S6D3 group than other groups. The ratio of CD4 and CD8 positive lymphocytes during the overall experimental period was independent of the ratio of SDPP and DPS. However, CD4+:CD8+ ratio was numerically lowered in pigs fed diet the S6D3 diet. Therefore, the present study suggests that an optimal inclusion ratio for maximizing growth performance and maintaining low immune status is 6% of SDPP and 3% of DPS in weaned pigs.

Position and Attitude Control System Design of Magnetic Suspension and Balance System for Wind Tunnel Test using Iterative Feedback Tuning and L1 Adaptive Control Scheme (IFT와 L1 적응제어기법을 이용한 풍동실험용 자기부상 비접촉식 밸런스의 제어시스템 설계)

  • Lee, Dong-Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.28-35
    • /
    • 2017
  • Magnetic Suspension and Balance System (MSBS) demonstrates the capacity to levitate an experimental model absent any mechanical contact using magnetic forces and moments. It allows precise control of position and attitude of the model, and measures external forces and moments acting on the model. For the purpose of acquisition of reliable experimental results under stable and safe conditions, the performance and robustness of the position and attitude control system of MSBS needs to be improved. To this end, Iterative Feedback Tuning (IFT) and L1 adaptive output feedback algorithm were employed to automatically increase command following performance and to ensure robust operation of MSBS with failure of electric power supply. The applicability was validated using computational simulation.

Formation Control of Mobile Robots using PID Controller with Neural Networks (신경회로망 PID 제어기를 이용한 이동로봇의 군집제어)

  • Kim, Yong-Baek;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1811-1817
    • /
    • 2014
  • In this paper, a PID controller with interpolated gains by use of neural networks is proposed for the formation control problem that following robots track a leading robot with constant distances and angles when there are changes in the mass of the following robot. The whole control system is composed of a kinematic controller and a dynamic controller considering the robot dynamics. The dynamic controller is the PID controller with varying gains, and the proper gains are obtained for some representative masses of the follower robot by the genetic algorithm. Neural networks is trained using the genetic algorithm with the gain data obtained in the previous step. The trained neural network determines optimal PID gains for a random mass of following robot. Simulation studies show that for arbitrary masses of the tracking robot, the PID controller with interpolated gains by the trained neural network has better tracking performance than that of the PID controller with fixed gains.

Effects of compound organic acid calcium on growth performance, hepatic antioxidation and intestinal barrier of male broilers under heat stress

  • He, Junna;Ma, Lianxiang;Qiu, Jialing;Lu, Xintao;Hou, Chuanchuan;Liu, Bing;Yu, Dongyou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1156-1166
    • /
    • 2020
  • Objective: The aim of this study was to evaluate the effects of compound organic acid calcium (COAC) on growth performance, hepatic antioxidant status and intestinal barrier of male broilers under high ambient temperature (32.7℃). Methods: Nine hundred healthy one-d-old Cobb-500 male broiler chicks were randomly assigned into three groups with six replicates of 50 birds each. A basal diet supplemented with 0% (control), 0.4% and 0.8% COAC, respectively were fed to birds for 6 weeks. All treatments were under high ambient indoor temperature of 32.7℃, and had a constant calcium and available phosphorus ratio. Results: The results showed that, compared with control, the average daily gain of broilers in 0.4% and 0.8% was significantly increased and the ratio of feed to gain in in 0.4% and 0.8% was significantly decreased at 1 to 21, 22 to 42 and 1 to 42 days of age (p<0.05). Compared with control, 0.8% COAC slightly decreased (p = 0.093) the content of malondialdehyde in liver at 42 days of age while 0.4% COAC significantly decreased (p<0.05) the activity of alkaline phosphatase. Furthermore, 0.4% COAC significantly enhanced the intestinal barrier function via increasing jejunal and ileal ocln transcription, promoting jejunal mucin 2 transcription at 42 days of age (p<0.05), and decreasing jejunal toll-like receptor 2 (TLR-2) and ileal TLR-15, inducible nitric oxide synthase compared with control group (p<0.05). Whereas, no significant differences on the transcription of interleukin-1β in jejunum and ileum were observed among three treatments (p>0.05). Overall, heat stress caused by high natural environment temperature may induce the damage to hepatic antioxidation and intestinal barrier. Conclusion: Dietary inclusion of COAC can improve the tolerance of broilers to thermal environment through the modification of antioxidative parameters in liver and the mRNA expression of genes in intestinal barrier, resulting in an optimal inclusion level of 0.4%.

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.

Effects of Dietary Garlic Powder on Growth, Feed Utilization and Whole Body Composition Changes in Fingerling Sterlet Sturgeon, Acipenser ruthenus

  • Lee, Dong-Hoon;Lim, Seong-Ryul;Han, Jung-Jo;Lee, Sang-Woo;Ra, Chang-Six;Kim, Jeong-Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1303-1310
    • /
    • 2014
  • A 12 week growth study was carried out to investigate the supplemental effects of dietary garlic powder (GP) on growth, feed utilization and whole body composition changes of fingerling sterlet sturgeon Acipenser ruthenus (averaging weight, 5.5 g). Following a 24-h fasting, 540 fish were randomly distributed to each of 18 tanks (30 fish/tank) under a semi-recirculation freshwater system. The GP of 0.5% (GP0.5), 1% (GP1), 1.5% (GP1.5), 2% (GP2) and 3% (GP3) was added to the control diet (GP0) containing 43% protein and 16% lipid. After the feeding trial, weight gain (WG) of fish fed GP1.5, GP2 and GP3 were significantly higher (p<0.05) than those of fish fed GP0, GP0.5 and GP1. Feed efficiency and specific growth rate (SGR) showed a similar trend to WG. Protein efficiency ratio of fish fed GP1.5, GP2, and GP3 were significantly higher (p<0.05) than those of fish groups fed the other diets. A significant difference (p<0.05) was found in whole body composition (moisture, crude protein, crude lipid, ash, and fiber) of fish at the end of the experiment. Significantly higher (p<0.05) protein and lipid retention efficiencies (PRE and LRE) were also found in GP1.5, GP2, and GP3 groups. Broken-line regression model analysis and second order polynomial regression model analysis relation on the basis of SGR and WG indicated that the dietary optimal GP level could be greater than 1.77% and 1.79%, but less than 2.95% and 3.18% in fingerling sterlet sturgeon. The present study suggested that dietary GP for fingerling sterlet sturgeon could positively affect growth performance and protein retention.

Experimental Data based-Parameter Estimation and Control for Container Crane (실험적 데이터 기반의 컨테이너 크레인 파라미터 추정 및 제어)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.379-385
    • /
    • 2008
  • In this paper, we presents a scheme for the parameter estimation and optimal control scheme for apparatus of container crane system. For parameter estimation, first, we construct the open loop of the container crane system and estimate its parameters based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. The RCGA plays an important role in parameter estimation as an adaptive mechanism. For controller design, state feedback gain matrix is searched by another RCGA and the estimated model. The performance of the proposed methods are demonstrated through a set of simulation and experiments of the experimental apparatus.

Development of a Nuclear Steam Generator Tube Inspection/maintenance Robot

  • Shin, Ho-Cheol;Kim, Seung-Ho;Seo, Yong-Chil;Jung, Kyung-Min;Jung, Seung-Ho;Choi, Chang-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2508-2513
    • /
    • 2003
  • This paper presents a nuclear steam generator tube inspection/maintenance robot system. The robot assists in automatic non-destructive testing and the repair of nuclear steam generator tubes welded into a thick tube sheet that caps a hemispherical or quarter-sphere plenum which is a high-radiation area. For easy carriage and installation, the robot system consists of three separable parts: a manipulator, a water-chamber entering and leaving device for the manipulator and a manipulator base pose adjusting device. A software program to control and manage the robotic system has been developed on the NT based OS to increase the usability. The software program provides a robot installation function, a robot calibration function, a managing and arranging function for the eddy-current test, a real time 3-D graphic simulation function which offers remote reality to operators and so on. The image information acquired from the camera attached to the end-effecter is used to calibrate the end-effecter pose error and the time-delayed control algorithm is applied to calculate the optimal PID gain of the position controller. The developed robotic system has been tested in the Ulchin NPP type steam generator mockup in a laboratory.

  • PDF

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

Throughput-efficient Online Relay Selection for Dual-hop Cooperative Networks

  • Lin, Yuan;Li, Bowen;Yin, Hao;He, Yuanzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2095-2110
    • /
    • 2015
  • This paper presents a design for a throughput-efficient online relay selection scheme for dual-hop multi-relay cooperative networks. Problems arise with these networks due to unpredictability of the relaying link quality and high time-consumption to probe the dual-hop link. In this paper, we firstly propose a novel probing and relaying protocol, which greatly reduces the overhead of the dual-hop link estimation by leveraging the wireless broadcasting nature of the network. We then formulate an opportunistic relay selection process for the online decision-making, which uses a tradeoff between obtaining more link information to establish better cooperative relaying and minimizing the time cost for dual-hop link estimation to achieve higher throughput. Dynamic programming is used to construct the throughput-optimal control policy for a typically heterogeneous Rayleigh fading environment, and determines which relay to probe and when to transmit the data. Additionally, we extend the main results to mixed Rayleigh/Rician link scenarios, i.e., where one side of the relaying link experiences Rayleigh fading while the other has Rician distribution. Numerical results validate the effectiveness and superiority of our proposed relaying scheme, e.g., it achieves at least 107% throughput gain compared with the state of the art solution.