• Title/Summary/Keyword: Optical-components manufacturing process

Search Result 62, Processing Time 0.028 seconds

Petri-Nets Modeling and Performance Evaluation of Optical-components Manufacturing System (광 부품 조립 시스템의 모델링과 성능평가)

  • 김영호;김지한;정승권;배종일;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.491-495
    • /
    • 2002
  • In the paper, a Visual factory model for a optical-components manufacturing process is built. The optical-components manufacturing process is composed of 3 operation processes; optical sub assembly process, package assembly process, and fiber assembly process. Each process is managed not a batch mode, which is one of most popular manufacturing styles to produce a great deal of industrial output, but though a modular cell. In the processes, a modular cell has to be processed independently of the other cells. Optimization for the composition of assembly cell in the optical-components system is made by the Visual factory model.

  • PDF

Modeling of Optical-components Manufacturing System Using Petri-Net (페트리 네트를 이용한 광부품 조립 시스템의 모델링)

  • 김영호;차동국;정승권;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.636-639
    • /
    • 2002
  • In the paper, a Visual factory model for a optical-components manufacturing process is built. The optical-components manufacturing process is composed of 3 operation processes; optical sub assembly process, package assembly process, and fiber assembly process. Each process is managed not a batch mode, which is one of most popular manufacturing styles to produce a great deal of industrial output, but though a modular cell. In the processes, a modular cell has to be processed independently of the other cells. Optimization for the composition of assembly cell in the optical-components system is made by the Visual factory model.

  • PDF

Optimization for the Composition of Assembly Cell in the Optical-Components System

  • Kim, Sok-Ha;Kim, Young-Ho;Seung, Gweon-Jeong;Lee, Man-Hyung;Bea, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.133.4-133
    • /
    • 2001
  • In the paper, a Visual factory model for a optical-components manufacturing process is built. The optical-components manufacturing process is composed of 3 operation processes; optical sub assembly process, package assembly process, and fiber assembly process. Each process is managed not a batch mode, which is one of most popular manufacturing styles to produce a great deal of industrial output, but though a modular cell. In the processes, a modular cell has to be processed independently of the other cells. Optimization for the composition of assembly cell in the optical-components system is made by the Visual factory model.

  • PDF

The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays (적외선용 광학소자의 초정밀 절삭특성)

  • Won, Jong-Ho;Park, Won-Kyoo;Kim, Ju-Hwan;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

Study on Fabrication of a Large Concave Mirror Surface Using a Swing-Arm Type Profilometer (스윙암 방식의 형상 측정기를 이용한 대형 반사경의 정밀가공에 관한 연구)

  • Lee, Ki-Am;Kim, Ock-Hyun;Lee, Eung-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.41-46
    • /
    • 2008
  • Generally optical components are fabricated by grinding, lapping and polishing processes. Those processes take long time to obtain optical high surface quality. In the case of large optical components, the on-machine measurement is strongly recommended because the workpiece is fragile and difficult to set up for fabricating and measuring. This paper is concerned about a swing-arm mechanism which can be used for on-machine measurement of a surface profile with a sensing probe end-effect, and also for grinding or lapping the surface with a corresponding tool. The measuring accuracy and uncertainty using a swing arm type profilometer have been studied. The experimental results show that this method is useful specially in lapping process with the accuracy of $5{\mu}m$. Those inspection data are provided for correcting the residual figuring error in next processes.

  • PDF

Fabrication and analysis of optical micro-pyramid array-patterns (광학 마이크로 피라미드 패턴의 제조 및 광특성 해석)

  • Lee, Je-Ryung;Jeon, Eun-Chae;Je, Tae-Jin;Woo, SangWon;Choi, Do-Sun;Yoo, Yeong-Eun;Kim, Hwi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.7-12
    • /
    • 2014
  • A transparent poly methyl methacrylate (PMMA) optical micro-pyramid array-pattern is designed and fabricated using an injection modeling technique. The device's optical characteristics are tested and analyzed theoretically. In the optical pattern generated using the fabricated PMMA pattern, the components, due to not only refraction but also diffraction, are observed simultaneously. Wave optic modeling and analysis reveals that the energy ratio between the diffraction and refraction in the optical pattern are dependent on the critical dimension of the optical pattern such that the refraction and diffraction tend to be directly and inversely proportional to the pattern dimension, respectively.

Precision Profile Measurement on Roughly Processed Surfaces (거친 가공표면 형상의 고정밀 측정법 개발)

  • Kim, Byoung-Chang;Lee, Se-Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • We present a 3-D profiler specially devised for the profile measurement of rough surfaces that are difficult to be measured with conventional non-contact interferometer. The profiler comprises multiple two-point-diffraction sources made of single-mode optical fibers. Test measurement proves that the proposed profiler is well suited for the warpage inspection of microelectronics components with rough surface, such as unpolished backsides of silicon wafers and plastic molds of integrated-circuit chip package.

  • PDF

Development of machining technology for non-continuous pattern removing plastic deformation around pattern (패턴 주변의 소성변형현상을 제거한 고품위 불연속패턴 가공기술 개발)

  • Jeon, Eun-chae;Je, Tae-Jin;Chang, Sunghwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Patterned optical components are widely used for optical products such as LCD and lighting. Since CCFL was used as a light source in the products, prism films having linear continuous optical patterns were widely used. However, LED which is a dot light source is popular recently, therefore, the optical products need new optical components having non-continuous optical patterns. Indentation machining method is a powerful method for machining of non-continuous pattern. When a copper mold and a brass mold were machined by this method, severe plastic deformation called pile-up was observed around the patterns. Since pile-up has negative relationship to ductility, this deformation can be eliminated by annealing treatment which makes the materials ductile. No plastic deformation occurred when machined after annealing at $600{^{\circ}C}$ and $575{^{\circ}C}$ for copper and brass, respectively. Finally, non-continuous optical patterns with high quality were machined on a copper mold and a brass mold successively.

A Study on Processing and Performance of a 600dpi Master F-theta Lens (600dpi 마스터 에프세타 렌즈 가공 및 성능에 관한 연구)

  • Park, Yong-Woo;Moon, Seong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-7
    • /
    • 2020
  • This study examines the processing and performance of an f-theta lens, one of the main components used in laser printer and laser scanning systems. To design an f-theta lens, the optical path of the components of the laser scanning unit f-theta lens, cylinder lens, and collimator lens must be identified. The goal after machining the master f-theta lens is to understand the optical properties, root mean square, and peak to valley.

Ultra-precision Machining of Space Telescope IR Camera Lens (초정밀 가공기를 이용한 적외선 우주망원경용 렌즈의 절삭가공기술개발)

  • Yang, Sun-Choel;Kim, Geon-Hee;Kim, Hyo-Sik;Shin, Hyun-Su;Hong, Kweon-Hee;Yoo, Jong-Sin;Kim, Dong-Rak;Park, Soo-Jong;Nam, Uk-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.31-36
    • /
    • 2005
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are studied and regularities of machining process are drawn. Optical crystals have been known to more and more important applications in the field of modern optics. Ge is more brittle material of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of Ge and apply the SPDTM technique to the manufacturing of ultra precision optical components of Ge. As a result, the surface roughness is the best when cutting speed is 180m/min, feed rate is 2mm/min, depth of cut is $0.5{\mu}m$ and nose radius of tool is 0.8mm.

  • PDF