• Title/Summary/Keyword: Optical zooming

Search Result 16, Processing Time 0.03 seconds

4 반사경 ANASTIGMAT 의 ZOOMING 에 관한 연구

  • 나승유;이상수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1988.06a
    • /
    • pp.59-67
    • /
    • 1988
  • 연속적으로 aplanat 조건을 만족하는 4 반사경의 zooming에서 aplanat 4구면 반사광학계가 갖는 astigmatism을 줄이기 위하여 4구면 중 하나의 반사경에 원추곡면을 사용함으로써 줌 궤적상의 한점에서 anatsigmat 조건을 만족하도록 하였다. 이방법에 의한 astigmatism 의 보정효과는 제 1 면에 ellipsoid를 사용하였을 때 가장 우수하였다.

  • PDF

Characteristics Analysis and Fabrication of an Ultrasonic Motor for Auto Focusing and Optical zooming (Auto Focusing 및 Optical zooming에 사용될 초음파모터의 특성분석)

  • Yun, Yong-Jin;Kwon, Oh-Duk;Lee, Jong-Sub;Kang, Sung-Hwa;Lim, Ki-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.330-331
    • /
    • 2005
  • 본 논문에서는 카메라폰용 광학중(Optical zooming) 과 자동초점조절장치 (Auto Focusing, AF)에 쓰일 초음파모터를 제작하였다. 초음파모터의제작 및 시뮬레이션은 유한요소해석 프로그램인 ATILA 5.2.1 (Magsoft co.)를 사용하여 디자인설계에 따른 구동특성을 고찰하였고 제작된 초음파모터는 한쪽 면이 없는 사작형의 탄성체를 제작하였으며 탄성체의 양쪽 다리에 각각 압전체를 부착하였다. 또한 압전세라믹의 조성은 $0.9Pb(Zr_{0.51}Ti_{0.49})O_3-0.1Pb(Mn_{1/3}Nb_{1/3}Sb_{1/3})O_3$의 조성으로 설계하였고 시편의 제조는 7-layer로 적층하였다. 제작된 압전세라믹의 치수는 6*2*0.35$mm^3$(길이*폭*두께)로 제작하였다 또한 탄성체의 외형치수는 10*10*2$mm^3$로 제작하였으며 두께를 각각 0.3[mm], 0.5[mm], 0.8[mm]으로 변화시키며 제작하였다. 두께가 0.8[mm]인경우 공진주파수는 60.5[kHz]를 나타내었으며 초음파모터의 압전세라믹에 인가전압이 증가함에 따라 회전속도와 모터에 흐르는 전류는 증가하였다. 인가전압이 40[Vpp] 일 때 회전속도는 206[rpm] 이며 소비전력은 0.3[W]로 제작된 시편은 카메라폰용 광학중 및 자동초점조절장치시스템 분야에 응용이 가능하다.

  • PDF

HYPERSPECTRAL IMAGING SPECTROMETER WITH A NOVEL ZOOMING FUNCTION

  • Choi Jin;Kim Tae Hyung;Kong Hong Jin;Lee Jong-Ung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.213-216
    • /
    • 2005
  • A novel hyperspectral imaging spectrometer controlling spatial and spectral resolution individually has been proposed. This imaging spectrometer uses a zoom lens as a telescope and a focusing element. It can change the spatial resolution fixing the spectral resolution or the spectral resolution fixing the spatial resolution. Here, we report the concept of the hyperspectral imaging spectrometer with the novel zooming function and the optical design of a zoom lens as the focusing element. By using lens module and third-order aberration theory, we have presented the initial design of four-group zoom lens with external entrance pupil. And the optimized zoom lens with a focal length of 50 to 150 mm is obtained from the initial design by the optical design software. As a result, the designed zoom lens shows satisfactory performances in wavelength range of 450 to 900 nm as a focusing element in an imaging spectrometer. Furthermore, the collimator lens of the imaging spectrometer is designed through the third-order aberration correction by using an iterative process.

  • PDF

Characteristics of pi-shaped Ultrasonic Motor (TT형 초음파 모터의 특성평가)

  • Yun, Yong-Jin;Park, Sung-Hee;Kang, Sung-Hwa;Lim, Ki-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.189-190
    • /
    • 2005
  • 본 논문에서는 카메라폰용 광학줌(Optical zooming)과 자동초점조절장치(Auto Focusing,AF)에 쓰일 초음파모터를 제작하였다. 초음파모터의 제작 및 시뮬레이션은 유한요소해석 프로그램인 ATILA 5.2 1(Magsoft co.)를 사용하여 디자인설계에 따른 구동특성을 고찰하였고 제작된 초음파모터는 한쪽 면이 없는 사작형의 탄성체를 제작하였으며 탄성체의 양쪽 다리에 각각 압전체를 부착하였다 또한 압전세라익의 조성은 0.9Pb$(Zr_{0.51}Ti_{0.49})O_3$ - 0.1Pb$(Mn_{1/3}Nb_{1/3}Sb_{1/3})O_3$ 의 조성으로 설계하였고 시편의 제조는 7-layer로 적층하였다. 제작된 압전세라믹의 치수는 6*2*0.35mm$^3$(길이*폭*두께)로 제작하였다. 또한 탄성체의 외형치수는 8*4*2mm$^3$로 제작하였으며 회전축의 지름은 2mm로 제작하였다. 인가전압과 공진주파수가 각각 20Vpp, 64kHz일 때 소비전력은 0.3[W]이며 회전속도는 500rpm 으로 측정되었다.

  • PDF

Large Displacement Polymer Bimorph Actuator for Out-of-Plane Motion

  • Jeung Won-Kyu;Choi Seog-Moon;Kim Yong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.263-267
    • /
    • 2006
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene (PVDF-TrFE). The large difference of coefficient of thermal expansion (CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a significant deflection with relatively small temperature rise. Compared to the most conventional micro actuators based on MEMS (micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. Additionally, we can achieve response time of 14.6 ms, resonance frequency of 12 Hz, and reliability ability of $10^5$ cycles. The proposed actuator can find applications where a large vertical displacement is needed while maintaining compact overall device size, such as a micro zooming lens, micro mirror, micro valve and optical application.

Detecton of OPtical Flow Using Cellular Nonlinear Neural Networks (셀룰라 비선형 회로 구조를 이용한 optical flow 검출)

  • Son, Hong-Rak;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3053-3055
    • /
    • 2000
  • The Cellular Nonlinear Networks structure for Distance Transform (DT) and the robust optical flow detection algorithm based on the DT are proposed. The proposed algorithm is for detecting the optical flows on the trajectories only of the feature points. The translation lengths and the directions of feature movements are detected on the trajectories of feature points on which Distance Transform Field is developed. The robustness caused from the use of the Distance Transform and the easiness of hardware implementation with local analog circuits are the properties of the proposed structure, To verify the performance of the proposed structure and the algorithm, simulation has been done about zooming image.

  • PDF

Development of a Compact 3-D HDTV Camera with Zoom Lens

  • Yamanoue, H.;Okui, M.;Okano, F.;Yuyama, I.
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.49-54
    • /
    • 2001
  • Research on shooting conditions of 3D program production for natural 3D images has been continued. In the study, it has been shown that orthostereoscopic conditions bring about no inconsistency between depth information from perspective of the lenses and that from binocular parallax. A newly developed 3D camera is based on orthostereoscopic conditions, which result in compactness of the camera (weight 8). At the same time, the new camera has a zooming function and is valuable in many ways, especially sport broadcasting. In this paper, we give an outline of the newly developed 3D HDTV camera and the results of subjective evaluation tests on psychological effects of the images shot by the camera. These tests show that the images shot by this camera are more powerful and comfortable to view than those shot by existing 3D cameras.

Unified Analytic Calculation Method for Zoom Loci of Zoom Lens Systems with a Finite Object Distance

  • Ryu, Jae Myung;Oh, Jeong Hyo;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.134-145
    • /
    • 2014
  • The number of lens groups in modern zoom camera systems is increased above that of conventional systems in order to improve the speed of the auto focus with the high quality image. As a result, it is difficult to calculate zoom loci using the conventional analytic method, and even the recent one-step advanced numerical calculation method is not optimal because of the time-consuming problem generated by the iteration method. In this paper, in order to solve this problem, we suggest a new unified analytic method for zoom lens loci with finite object distance including infinite object distance. This method is induced by systematically analyzing various distances between the object and other groups including the first lens group, for various situations corresponding to zooming equations of the finite lens systems after using a spline interpolation for each lens group. And we confirm the justification of the new method by using various zoom lens examples. By using this method, we can easily and quickly obtain the zoom lens loci not only without any calculation process of iteration but also without any limit on the group number and the object distance in every zoom lens system.

Design and Performance of a Catadioptric Omnidirectional Zoom Optical System Using a Hybrid Lens for Visible Light (가시광에서 하이브리드 렌즈를 사용한 반사굴절식 전방위 줌 광학계의 설계 및 성능평가)

  • Park, Hyun Sik;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.96-104
    • /
    • 2020
  • A catadioptric omnidirectional zoom optical system using a hybrid lens (COZOSH) that performs simultaneously two functions of a lens and a mirror was designed at the visible wavelength range for daytime unmanned surveillance, and its performance was analyzed. The hybrid lens has lots of advantages in terms of fabrication and assembly of a COZOSH, because of the obviation of a lens boring process and reduction of the number of optical components. Additionally, we designed the COZOSH to expand the compressed inner-image region of a donut image at low spatial frequencies. As a result, the optimized design performance of the optical system that satisfies all initial design specifications was obtained from calculation of the modulation transfer function, spot diagram, and tolerance analysis. We confirmed that the COZOSH is a passively athermalized optical system under conditions of temperature variation from -30℃ to 50℃, by using athermalization analysis during zooming.

Development of a Real-time Sensor-based Virtual Imaging System (센서기반 실시간 가상이미징 시스템의 구현)

  • 남승진;오주현;박성춘
    • Journal of Broadcast Engineering
    • /
    • v.8 no.1
    • /
    • pp.63-71
    • /
    • 2003
  • In sport programs, real-time virtual imaging system come into notice for new technology which can compose information like team logos, scores. distances directly on playing ground, so it can compensate for the defects of general character generator. In order to synchronize graphics to camera movements, generally two method is used. One is for using sensors attached to camera moving axis and the other is for analyzing camera video itself. KBS technical research institute developed real-time sensor-based virtual imaging system 'VIVA', which uses four sensors on pan, tilt, zoom, focus axis and controls virtual graphic camera in three dimensional coordinates in real-time. In this paper, we introduce our system 'VIVA' and it's technology. For accurate camera tracking we calculated view-point movement occurred by zooming based on optical principal point variation data and we considered field of view variation not only by zoom but also by focus. We developed our system based on three dimensional graphic environment. so many useful three dimensional graphic techniques such as keyframe animation can be used. VIVA was successfully used both in Busan Asian Games and 2002 presidential election. We confirmed that it can be used not only in the field but also in the studio programs in which camera is used within more close range.