• Title/Summary/Keyword: Optical transparency

Search Result 312, Processing Time 0.03 seconds

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing (UV경화에 의한 폴리우레탄/유기화클레이 나노복합재료 제조와 물성 연구)

  • Shin, Geumsig;Chang, Young-Wook;Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.156-162
    • /
    • 2012
  • Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.

Control of ZnO Sputtering Growth by Changing Substrate Bias Voltage (ZnO 스퍼터링에서 기판전압의 변화에 의한 성장 조절)

  • Meng, Jun;Choi, Jaewon;Jeon, Wonjin;Jo, Jungyol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.94-97
    • /
    • 2017
  • Amorphous Si has been used for data processing circuits in flat panel displays. However, low mobility of the amorphous Si is a limiting factor for the data transmission speed. Metal oxides such as ZnO have been studied to replace the amorphous Si. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. When ZnO is grown by sputtering with $O_2$ as an oxidizer, there can be many ion species arising from $O_2$ decomposition. $O^+$, $O_2{^+}$, and $O^-$ ions are expected to be the most abundant species, and it is not clear which one contributes to the ZnO growth. We applied alternating substrate voltage (0 V and -70 V) during sputtering growth. We studied changes in transistor characteristics induced by the voltage switching. We also compared ZnO grown by dc and rf sputtering. ZnO film was grown at $450^{\circ}C$ substrate temperature. ZnO thin-film transistor grown with these methods showed $7.5cm^2/Vsec$ mobility, $10^6$ on-off ratio, and -2 V threshold voltage.

  • PDF

Enhancement of Electrical Conductivity in Silver Nanowire Network for Transparent Conducting Electrode using Copper Electrodeposition (구리 전기도금 방법을 이용한 은 나노와이어 투명전극의 전기전도도 향상)

  • Ji, Hanna;Jang, Jiseong;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.311-316
    • /
    • 2019
  • Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from $21.9{\Omega}{\square}$ to $12.6{\Omega}{\square}$. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.

Physicochemical Characteristics of UV/Ozone Treated Polydimethylsiloxane(PDMS) Wrinkle Structures (UV/Ozone 처리를 통한 Polydimethylsiloxane(PDMS) 주름 구조의 물리화학적 특성 분석)

  • Park, Hong-Gyu;Park, Seung-Yub
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.321-327
    • /
    • 2022
  • In this paper, a wrinkled structure was formed on the PDMS surface through UV/Ozone treatment, and the wrinkle structure formation mechanism was revealed through physicochemical characterization. A wrinkle structure was formed on the PDMS surface through UV/Ozone treatment for 30 min, and periodic wrinkle formation on the PDMS surface was confirmed by cross-sectional imaging of the scanning electron microscope. In addition, through x-ray photoelectron spectroscopy spectral analysis, it was confirmed that the silica-like-surface of SiOx on the PDMS surface was formed by UV/Ozone. The results of this study not only improve the understanding of the mechanism of wrinkle structure formation on the PDMS surface by UV/Ozone treatment, but also can be used as a basic study to adjust the amplitude and period of the wrinkle structure according to UV/Ozone irradiation conditions in the future.contact angles and the surface energies of FSAMs, it was confirmed that pretilt angles of LC molecules increased according to the alkyl chain length. High optical transparency and uniform homeotropic LC alignment characteristics of FSAMs showed the possibility of FSAMs as an LC alignment layers.

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study

  • Chan Yeong, Yu;Ezekiel Edward, Nettey-Oppong;Elijah, Effah;Su Min, Han;Seong-Wan, Kim;Seung Ho, Choi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.56-69
    • /
    • 2022
  • Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.

Study on preparation of a thin film type of ZnS(Ag) scintillator sheet for alpha-ray detection (얇은 필름 형태의 알파선 측정용 ZnS(Ag) 섬광 검출소재 제조 연구)

  • Seo, Bum-Kyoung;Jung, Yeon-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Jung, Chong-Hun;Han, Myeong-Jin
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.389-393
    • /
    • 2006
  • The detector consisted of ZnS(Ag) scintillator and photomultiplier tube (PMT) is widely used as contamination monitor in the nuclear facilities. Such detectors are mainly manufactured by adhering the ZnS(Ag) powder onto the transparent plastic. In this study the preparation condition for ZnS(Ag) scintillator sheet using a simple method was established. The scintillator sheet was composed with a support polymer sheet and ZnS(Ag) scintillator layer. The base sheet was prepared by casting the polymer solution after solving the polymer with solvent and the scintillator layer was manufactured by printing the mixture solution with ZnS(Ag) and paste. It was found that the polysulfone(PSf) as a polymer for the base sheet and a cyano resin as a paste for adhering the ZnS(Ag) scintillator was suitable. Also, the prepared thin scintillator sheet had a sufficient mechanical strength, a optical transparency and an alpha-ray detection performance.

Optical Properties of Sea Water in the Western Channel of the Korea Strait (대한해협에서의 해수의 광학적 성질)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.171-177
    • /
    • 1982
  • Optical properties of sea water were studied in the western channel of the Korea Strait, based on the data obtained from fifteen oceanographic stations in July, 1980. Submarine daylight intensity was measured at intervals of 5m depth in the upper 70m layer by using the underwater irradiameter (Kahlsico $\#268_{WA}360$). The mean absorption coefficients of the sea water were shown as $0.098(0.063\sim0.183),\;0.129(0.090\sim0.270), 0.081(0.044\sim0.142),\;and 0.087(0.036\sim0,142)$ for clear, red, green, and blue color respectively. The transparency ranged from 11.5 to 24m(mean 18.3m). The mean water color in this area was $3.5(3\sim4)$ in Forel scales. The relation between absorption coefficient $(\kappa)$ and transparency (D) was $\kappa=1.72/D,\;\kappa=2.33/D,\;\kappa=1.41/D,\;and \kappa=1.44/D$ for clear, red, green, and blue color respectively. The rates of light penetration for clear, red, green, and blue color in four different depths were computed with reference to the surface light intensity respectively. The mean rates of light penetration in proportion to depths were as follows; clear : $57.90\% (5m),\;23.40\%\;(15m),\;6.23\%\;(30m),\;1.00\%\;(50m).$ $red\;:\;48.95\%\;(5m),\;14,81\%\;(15m),\;2.76\%\;(30m),\;0.28\%\;(50m).$ $green:\;63.20\%\;(5m),\;30.47\%\;(15m),\;10.03\%\;(30m),\;2.24\%\;(50m).$ $blue\;:\;62.70\%\;(5m),\;30.00\%\;(15m),\;9.75\%\;(30m),\;1.70\%\;(50m)$

  • PDF

Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer (솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화)

  • Kim, Jin Hee;Seo, Yoon Kyung;Han, Joo Won;Oh, Ji Yoon;Kim, Yong Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) has attracted a great deal of attention as a transparent conductive material for organic solar cells or organic light-emitting diodes due to its high electrical conductivity, optical transparency, and excellent mechanical flexibility. It is well known that a solvent doping for PEDOT : PSS thin-films significantly increases the conductivity of films. In this paper, the effect of various kinds of solvent doping and post-treatment on the electrical and structural properties of PEDOT : PSS thin-films is investigated. The solvent doping greatly increases the conductivity of PEDOT : PSS thin-films up to 884 S/cm. A further enhancement of the conductivity of PEDOT : PSS thin-films is achieved by the solvent post-treatment which raises the conductivity up to 1131 S/cm. The enhancement is mainly caused by the depletion of insulating PSS and forming conducting PEDOT-rich granular networks. Strong optical absorption peaks at the wavelength of 225 nm of PEDOT : PSS thin-films indicate the depletion of insulating PSS by post-treatment. We believe that the solvent post-treatment is a promising method to achieve highly conductive transparent PEDOT : PSS thin-films for applications in efficient, low-cost and flexible organic devices.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Synthesis of transparent diamond-like carbon film on the glass by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD법에 의한 투명 다이아몬드상 탄소 박막 합성)

  • Kim, Tae-Gyu;Shin, Yeong-Ho;Cho, Hyun;Kim, Jin-Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.190-193
    • /
    • 2012
  • Transparent diamond-like carbon (DLC) films were synthesized on glass using radio frequency plasma enhanced chemical vapor deposition method from the gas mixture of $CH_4$, $SiH_4$ and Ar. The pressure, the rf-power, $CH_4/SiH_4/Ar$ ratio, and the deposition time were 0.1Torr, 100W, 20 : 1 : 1, and 20 min, respectively. The optical transmittances of DLC-deposited glass and uncoated glass were compared with each other in the visible light regions. The DLC-deposited glass showed transmittance of approximately 83 % and 95 % as compared to the uncoated glass for the wavelength of 380 nm and 500 nm, respectively. The hardness and roughness of DLC-coated glass have been measured by nanoindentation and AFM, respectively. The DLC-coated glass showed a little less or similar optical transmittance compared to the uncoated glass, while the hardness of DLC-coated glass was 2.5 times higher than that of the uncoated glass. The deposited DLC film had the very smooth surface and was thicker than 150 nm after deposition for 20 min.