• Title/Summary/Keyword: Optical shape estimation

Search Result 26, Processing Time 0.022 seconds

Optical-Electronic Method for Statistical Evaluation of Human Corneal Endothelial Patterns (Human Corneal Endothelial 패턴의 통계적 분석을 위한 광전자적 방법)

  • Lee, Yim-Kul
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.58-62
    • /
    • 1992
  • Hybrid optical-electronic procedures are introduced for the automated estimation of cell parameters (e.g., size, size variation, and shape). Two different optical Fourier analysis procedures are applied to high contrast cell boundary patterns obtained from specular micrographs of the endothelial layer. In one case, a large number of cell patterns are illuminated to extract average cell size information. Once the average cell size information has been obtained, individual cells are illuminated to extract shape information.

  • PDF

Estimation of the 3-D Shape Surfaces with Specular Reflections

  • Kim, Jee Hong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.672-678
    • /
    • 2014
  • We propose a method to estimate the 3-D shape of surfaces with specular reflection, using a model of the difference in appearance between images reflected from a flat surface and a curved surface. First, we analyze the geometry of spatial reflection from a specular surface and how reflected light varies due to a curved surface. This is used to estimate 3-D shape. The proposed method is shown to be effective in experiments using illumination from spatially distributed light sources and a camera capturing the reflected light from curved, specular surfaces.

Image Noise Removal using State Estimation Filter (상태 추정 필터를 이용한 영상 잡음 제거)

  • Jang, Hoon-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.237-242
    • /
    • 2022
  • Acquiring high-quality images in control and measurement systems is one of the important factors. Among image acquisition technologies, SFF (Shape from Focus) is a technology for recovering a 3D shape by acquiring 2D images with different focus levels by moving an object at a predetermined step size along the optical axis. For SFF, when an object is moved at a constant step size, mechanical vibration, referred as jitter noise, occurs in each step along the optical axis. In this paper, a new state estimation filter is designed and applied for reducing the jitter noise. For the application of the proposed method, the jitter noise and focus curves are modeled as Gaussian function. Experimental results demonstrate the effectiveness of proposed method.

Examining the Non-spherical Effect of Asian Dust Particle Onaerosol Optical Depth (황사의 비구형성이 에어러솔 광학적 두께 산출에 미치는 영향 연구)

  • Lee, Hyun-Ju;Kim, Sang-Woo;Yoon, Soon-Chang;Kang, Jung-Yoon
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.175-186
    • /
    • 2012
  • In this study, we investigate the effects of elliptical shape of Asian dust particles on the estimation of aerosol optical depth by implementing T-matrix method into WRF/Chem Dust Model. The phase function calculated by assuming elliptical particle shape near $110{\sim}160^{\circ}$ of scattering angle showed about 20 times larger than that calculated by assuming spherical particle shape. Significant difference of extinction efficiency was found with an increase of size parameter and aspect ratio. From the simulations of two Asian dust events occurred on 1 April 2007 and 16 March 2010, we found that the difference of extinction efficiency between elliptical and spherical particle shape was about 5~8%. The aerosol optical depth calculated by assuming elliptical particle shape with 1.6, 1.4 and 1.2 of aspect ratio was about $4.0{\pm}0.5%$, $2.0{\pm}0.2%$, and $1.0{\pm}0.1%$ larger than those estimated by assuming spherical particle shape.

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

An Estimation of RCS through Configuring Element Analysis (형상요소분석을 통한 레이더단면적의 추정)

  • Kwon, T.J.;Shin, Bo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.417-423
    • /
    • 2012
  • Radar Cross Section(RCS) is a measure of how detectable an object is with a radar. A larger RCS indicates that an object is more easily detected. Informally, the RCS of an object is the cross-sectional area of a perfectly reflecting sphere that would produce the same amount of reflection strength as the object in question would. In order to estimate RCS of aircraft weapons the external surface is modeled as a collection of simple shape elements. And the overall RCS is estimated as a vector sum of configuring elements' cross-sections which are well known given by analytic formulae. A RCS estimation code is developed for a typical shape of Air-To-Surface bombs and missiles. Size of weapons and location of fins are implemented in the code in addition to the presence of canards. The ability to predict radar return from flying vehicles becomes a critical technology issue in the development of stealth configurations. This simplified method of RCS estimation is known to be fast and accurate enough in an optical region of high frequency incident radio wave.

Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction

  • Ko, Kwang-Eun;Park, Jun-Heong;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.

MEASUREMENT OF THREE-DIMENSIONAL TRAJECTORIES OF BUBBLES AROUND A SWIMMER USING STEREO HIGH-SPEED CAMERA

  • Nomura, Tsuyoshi;Ikeda, Sei;Imura, Masataka;Manabe, Yoshitsugu;Chihara, Kunihiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.768-772
    • /
    • 2009
  • This paper proposes a method for measurement three-dimensional trajectories of bubbles generated around a swimmer's arms from stereo high-speed camera videos. This method is based on two techniques: two-dimensional trajectory estimation in single-camera images and trajectory pair matching in stereo-camera images. The two-dimensional trajectory is estimated by block matching using similarity of bubble shape and probability of bubble displacement. The trajectory matching is achieved by a consistensy test using epipolar constraint in multiple frames. The experimental results in two-dimensional trajectory estimation showed the estimation accuracy of 47% solely by the general optical flow estimation, whereas 71% taking the bubble displacement into consideration. This concludes bubble displacement is an efficient aspect in this estimation. In three-dimensional trajectory estimation, bubbles were visually captured moving along the flow generated by an arm; which means an efficient material for swimmers to swim faster.

  • PDF

Non-Destructive Evaluation of Separation and Void Defect of a Pneumatic Tire by Speckle Shearing Interferometry

  • Kim, Koung-Suk;Kang, Ki-Soo;Jung, Hyun-Chul;Ko, Na-Kyong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1493-1499
    • /
    • 2004
  • This paper describes the speckle shearing interferometry, a non-destructive optical method, for quantitative estimation of void defect and monitoring separation defect inside of a pneumatic tire. Previous shearing interferometry has not supplied quantitative result of inside defect, due to effective factors. In the study, factors related to the details of an inside defect are classified and optimized with pipeline simulator. The size and the shape of defect can be estimated accurately to find a critical point and also is closely related with shearing direction. The technique is applied for quantitative estimation of defects inside of a pneumatic tire. The actual traveling tire is monitored to reveal the cause of separation and the starting points. And also unknown void defects on tread are inspected and the size and shape of defects are estimated which has good agreement with the result of visual inspection.

A Study on the Estimation of Smartphone Movement Distance using Optical Flow Technology on a Limited Screen (제한된 화면에 광류 기술을 적용한 스마트폰 이동 거리 추정에 관한 연구)

  • Jung, Keunyoung;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.71-76
    • /
    • 2019
  • Research on indoor location tracking technology using smartphone is actively being carried out. Especially, the movement distance of the smartphone should be accurately measured and the movement route of the user should be displayed on the map. Location tracking technology using sensors mounted on smart phones has been used for a long time, but accuracy is not good enough to measure the moving distance of the user using only the sensor. Therefore, when the user moves the smartphone in a certain posture, it must research and develop an appropriate algorithm to measure the distance accurately. In this paper, we propose a method to reduce moving distance estimation error by removing user 's foot shape by limiting the screen of smartphone in pyramid - based optical flow estimation method.