• Title/Summary/Keyword: Optical scattering rate

Search Result 69, Processing Time 0.025 seconds

Suppression of Stimulated Brillouin Scattering Effect in Optical Transmission System (광섬유에 유도되는 stimulated Brillouin scattering 현상이 광전송시스템에 미치는 영향 측정 및 제거)

  • 김향균;이창희;한정희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.60-65
    • /
    • 1996
  • Degradation of the optical communication system due to the stimulated Brillouin scattering effect in the optical fiber is measured, and its suppression is demonstrated. In the externally modulated 2.5 Gb/s transmission experiment, bit error rate is increased due to the stimulated Brillouin scattering effect when the signal power (linewidth 3 MHz) incident into the dispersion shifted fiber is larger than 10 dBm. SBS effect is suppressed completely, up to 15 dBm of transmission power, by broadening the source linewidth to 200 MHz.

  • PDF

Parameterization for Longwave Scattering Properties of Ice Clouds with Various Habits and Size Distribution for Use in Atmospheric Models

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • A parameterization for the scattering of longwave radiation by ice clouds has been developed based on spectral scattering property calculations with shapes and sizes of ice crystals. For this parameterization, the size distribution data by Fu (1996) and by Michell and Arnott (1994) are used. The shapes of ice crystal considered in this study are plate, solid column, hollow column, bullet-rosette, droxtal, aggregate, and spheroid. The properties of longwave scattering by ice crystals are presented as a function of the extinction coefficient, single-scattering albedo, and asymmetry factor. The heating rate and flux by the radiative parameterization model are calculated for wide range of ice crystal sizes, shapes, and optical thickness. The results are compared with the calculated results using a six-stream discrete ordinate scattering algorithm and Chou's method. The new method (with various habits and size distributions) provides a good simulation of the scattering properties and cooling rate in optically thin clouds (optical thickness < 5). Depending on the inclusion of scattering by ice clouds, the errors in the calculation of the cooling rates are significantly different.

Optical Properties of Two Different Metallic NaxCoO2:x=0.35 and 0.75

  • Hwang, J.;Yang, J.;Timusk T.;Chou, F.C
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.128-132
    • /
    • 2005
  • We report optical ab-plane properties of the layered sodium cobaltate, $Na_xCoO_2$ for x = 0.35 and 0.75. Two samples show metallic behaviors according to dc resistivity transport. Overall temperature dependent optical conductivities of both samples are very similar to those of the high temperature superconducting underdoped cuprates. We found that the optical scattering rate of x = 0.75 sample, which is in a Curie-Weiss metallic phase, varies linearly (non-Fermi liquid) with frequency and temperature while that of x = 0.35 sample, which is in a paramagnetic metallic phase, varies quadratically (Fermi liquid) with frequency and temperature. Both x = 0.35 and 0.75 samples have an onset of scattering around $600\;cm^{-1}$ which can be attributed to the interaction of charge carriers with a bosonic collective mode in a system.

Implementation of Stimulated Brillouin Scattering in Optical Fiber Sensor for Improved Stability by Using Neuro-Fuzzy Theory (뉴로-퍼지 알고리즘을 적용한 광파이버 유도 브릴루앙 산란 센서의 신뢰도 향상에 관한 연구)

  • Hwang, Kyoung-Jun;Yeom, Keong-Tae;Kim, Yong-Kab
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.92-97
    • /
    • 2008
  • This is a research to apply 1310nm single-mode optical fiber to a temperature sensor. The existing study of optical fiber sensor is complicated because it was made with various equipment. To vary scattering, the variation of optical frequency is measured by using Bragg(lattice) or pulse generator and also bulk system is created by YAG laser but there were some difficulties creating experimental environment and it was a problem that the stability of measured data was low. The temperature sensor system using the suggested sBs(stimulated Brillouin scattering:sBs) from this research is much more simplified straight-line system. To improve the trust and accuracy of noises from optical frequency and unclear results, it was analysed by using Neuro-Fuzzy algorithm. we tried to get more correct data than existing system. sBs measure that optical frequency changed due to the variation of temperature. The analyzed change rate of outcome by Fuzzy theory is 1.1 MHz.

A Study of Response Characteristics and False Counts in Optical Particle Counter (광학 입자 계수기의 응답특성 및 오계수에 관한 연구)

  • 안강호;이재헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.547-554
    • /
    • 1992
  • Response characteristics and false counts of laser and white light optical particle counters (OPC) have been studied as a function of particle size using monodisperse polystylen laterx (PSL) particles. Theoretical light scattering calculations for He-Ne laser based counter have been compared with the experimental results and thus good agreements have been found. The light scattering intensity in monochromatic light shows an oscillatory character for the transparent and spherical particles of PSL due to Mie resonance. Because of this effect, the response of the LAS-X OPC showed almost same responses in the diameter ranges of 0.4mu.m to 0.6mu.m and 0.7mu.m to 1.0mu.m for PSL particles. A laser optical particle counter with high flow rate applied for clean room has been studied to identify the noise sources. Three different manufacturer's clean room optical particle counters alos have been tested to measure the background noise level.

Crystal growth of 3C-SiC on Si(100) Wafers (Si(100)기판상에 3C-SiC결정성장)

  • Chung, Yun-Sik;Chung, Gwiy-Sang;Nishino, Shigehiro
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1593-1595
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) wafers up to a thickness of 4.3 ${\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was 4.3 ${\mu}m/hr$. The 3C-SiC epitaxial films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near 796 $cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The hetero-epitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$).

  • PDF

Crystal Growth of 3C-SiC Using HMDS Gas Source (HMDS 가스원을 이용한 3C-SiC의 결정성장)

  • Sun, Ju-Hun;Chung, Yun-Sik;Chung, Gwiy-Sang;Nishino, Shigehiro
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.735-738
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra$(2{\theta}=41.5^{\circ})$.

  • PDF

Physical Characteristics of 3C-SiC Thin-films Grown on Si(100) Wafer (Si(100) 기판 위에 성장돈 3C-SiC 박막의 물리적 특성)

  • ;;Shigehiro Nishino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.953-957
    • /
    • 2002
  • Single crystal 3C-SiC (cubic silicon carbide) thin-films were deposited on Si(100) wafer up to the thickness of 4.3 ${\mu}{\textrm}{m}$ by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane; {CH$_{3}$$_{6}$ Si$_{2}$) at 135$0^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC film was 4.3 ${\mu}{\textrm}{m}$/hr. The 3C-SiC epitaxial film grown on Si(100) wafer was characterized by XRD (X-ray diffraction), AFM (atomic force microscopy), RHEED (reflection high energy electron diffraction), XPS (X-ray photoelecron spectroscopy), and Raman scattering, respectively. Two distinct phonon modes of TO (transverse optical) near 796 $cm^{-1}$ / and LO (longitudinal optical) near 974$\pm$1 $cm^{-1}$ / of 3C-SiC were observed by Raman scattering measurement. The heteroepitaxially grown film was identified as the single crystal 3C-SiC phase by XRD spectra (2$\theta$=41.5。).).

Characterization of 3C-SiC grown on Si(100) water (Si(100) 기판상에 성장된 3C-SiC의 특성)

  • Na, Kyung-Il;Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.533-536
    • /
    • 2001
  • Single crystal cubic silicon carbide(3C-SiC) thin film were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD(atmospheric pressure chemical vapor deposition) method using hexamethyildisilane(HMDS) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical layers on Si(100) were characterized by XRD(X-ray diffraction), raman scattering and RHEED(reflection high-energy electron diffraction), respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The deposition films were identified as the single crystal 3C-SiC phase by XRD spectra($2{\theta}=41.5^{\circ}$). Also, with increase of films thickness, RHEED patterns gradually changed from a spot pattern to a streak pattern.

  • PDF

Crystal Characteristics of 3C-SiC Thin-films Grown on 2 inch Si(100) wafer (2 inch Si(100)기판위에 성장된 3C-SiC 박막의 결정특성)

  • Chung, Su-Young;Chung, Yun-Sik;Ryu, Ji-Goo;Chung, Gwiy-Sang;Shigehiro, Nishino
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.452-455
    • /
    • 2002
  • Single crystal 3C-SiC(cubic silicon carbide) thin-films were deposited on Si(100) substrate up to a thickness of $4.3{\mu}m$ by APCVD method using HMDS(hexamethyildisilane) at $1350^{\circ}C$. The HMDS flow rate was 0.5 sccm and the carrier gas flow rate was 2.5 slm. The HMDS flow rate was important to get a mirror-like crystal surface. The growth rate of the 3C-SiC films was $4.3{\mu}m/hr$. The 3C-SiC epitaxical films grown on Si(100) were characterized by XRD, AFM, RHEED, XPS and raman scattering, respectively. The 3C-SiC distinct phonons of TO(transverse optical) near $796cm^{-1}$ and LO(longitudinal optical) near $974{\pm}1cm^{-1}$ were recorded by raman scattering measurement. The heteroepitaxially grown films were identified as the single crystal 3C-SiC phase by XRD spectra$(2{\theta}=41.5^{\circ})$.

  • PDF