• Title/Summary/Keyword: Optical scanner

Search Result 165, Processing Time 0.029 seconds

Improvement of Reflection Angle of Optical Scanner Utilizing Magnetic Effect (자기효과를 이용한 광 Scanner의 반사각 개선)

  • Kim, Hung-Gun;Park, Kyung-Il;Shin, Kwang-Ho;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1718-1720
    • /
    • 2004
  • This paper is focused on the improvement of reflection angle of an optical scanner by changing a shape of a torsion bar attached with an optical scanner reflector(mirror). In order to improve the light efficiency of the optical scanner by virtue of the magnetic effect, which tiny magnets are attached under both ends of the optical scanner reflector. and hence the optical scanner reflector was operated in relatively lower driving voltage. By changing the torsion bar's shape I type into S type, we've got the lower resonant frequency(32.5Hz) of an optical scanner than that of conventional one(50Hz). According to these results. The reflection angle of an optical scanner with magnets was much larger in the range of about 14.8$^{circ}$ without a magnet. By making use of a magnetic actuator instead of a conventional electrostatic actuator, the optical scanner was less influenced from outdoor dust or moisture.

  • PDF

A Study on Improvement of the Measurement Method for Optical Scanner (광학식 스케너의 측정방법 개선에 관한 연구)

  • Joo, M.S.;Kim, M.J.;Lee, S.S.;Kim, S.K.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.841-847
    • /
    • 2001
  • This study is on the precision of the optical scanner which is suitable for shape modeling and non-contact equipment, comparing with a razer scanner. The optical scanner not only has all merits that non-contact methods have but also improve a veil phenomenon which is a razer scanner's demerits. However, the optical scanner has not been used extensively because the measurements are not very precise and there are not the definite methods of measurement. Hence, this study is to find out how parameters such as camera's hight, angle, luminous intensity, distance to object, and so on have an influence on measuring using the optical scanner and to establish the methods of measuring precision.

  • PDF

A Study on Improvement in a Method of Three Dimensional Configuration Scan Measurement (3차원 형상 스캔의 측정방법 개선에 관한 연구)

  • 김태호;김민주;이승수;박정보;전언찬
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.375-380
    • /
    • 2001
  • This study is on the precision of the optical scanner which is suitable for shape modeling and non-contact equipment, comparing with a razer scanner. The optical scanner not only has all merits that non-contact methods have but also improve a veil phenomenon which is a razer scanner's demerits. However, the optical scanner has not been used extensively because the measurements are not very precise and there are not the definite methods of measurement. Hence, this study is to find out how parameters such as camera's hight, angle, luminous intensity, distance to object, and so on have an influence on measuring using the optical scanner and to establish the methods of measuring precision.

  • PDF

A Study on Three-dimensional Configuration Scan by Photographing Parameter (촬영 매개변수에 의한 3차원 형상스캔에 관한 연구)

  • 이승수;김세민;김민주;박정보;전언천
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1013-1017
    • /
    • 1997
  • This study is on the precision of the optical scanner which is suitable for shape modeling and non-contact equipment, comparing with a razer scanner. The optical scanner not only has all merits that non-contact methods have but also improve a veil phenomenon which is a razer scanner's demerits. However, the optical scanner has not been used extensively because the measurements are not very precise and there are not the definite methods of measurements, Hence, this study is to find out how parameters such as camera's hight, angle, luminous intensity, distance to object, and so on have an influence on measuring using the optical scanner and to establish the methods of measuring precision.

  • PDF

Comparative study of accuracy of digitized model fabricated by difference optical source of non-contact 3D dental scanner (치과용 스캐너의 광원에 따른 디지털 모형의 정확도 비교연구)

  • Kim, Jae-Hong;Lee, Jung-Soo;Shim, Jeong-Seok
    • Journal of Technologic Dentistry
    • /
    • v.39 no.4
    • /
    • pp.227-233
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the validity of digital models fabricated by difference optical source of non-contact 3D dental scanner. Methods: A master model with the prepared upper full arch tooth was used. Stone model(N=10) were produced from master model, and on the other hands, digital models were made with the 3D dental scanner(Blue, white, red optical source). The linear distance between the reference points were measured and analyzed on the Delcam $Copycad^{(R)}$ graphic software. The results were statistically analyzed using the one-way ANOVA and Tukey's HSD test(${\alpha}=0.05$). Results: There were considerable differences in mean values between optical source within each color(blue, white, red), and this difference was not statistically significant(p>0.05). Conclusion : Three different color of dental scanner optical source showed clinically acceptable accuracies of full arch digital model produced by them. Besides, these results will have to be confirmed in further clinical studies.

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

Multi-facet 3D Scanner Based on Stripe Laser Light Image (선형 레이저 광 영상기반 다면 3 차원 스캐너)

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.811-816
    • /
    • 2016
  • In light of recently developed 3D printers for rapid prototyping, there is increasing attention on the 3D scanner as a 3D data acquisition system for an existing object. This paper presents a prototypical 3D scanner based on a striped laser light image. In order to solve the problem of shadowy areas, the proposed 3D scanner has two cameras with one laser light source. By using a horizontal rotation table and a rotational arm rotating about the latitudinal axis, the scanner is able to scan in all directions. To remove an additional optical filter for laser light pixel extraction of an image, we have adopted a differential image method with laser light modulation. Experimental results show that the scanner's 3D data acquisition performance exhibited less than 0.2 mm of measurement error. Therefore, this scanner has proven that it is possible to reconstruct an object's 3D surface from point cloud data using a 3D scanner, enabling reproduction of the object using a commercially available 3D printer.

Development of Image-space Telecentric Lens for Intra-Oral 3D Scanner

  • Kim, Tae Young;Shin, Min-Ho;Chang, Ryungkee;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • An image-space telecentric lens for an intra-oral 3D scanner was designed and fabricated for dental application. Since a telecentric function can provide the same results regardless of image plane position, it helps to realize a more accurate image for an intra-oral scanner. The performance of the designed lens meets the required properties for HD resolution. In particular, lateral color is corrected within 1 pixel. This system achieves depth of focus of more than 3 mm. For user convenience, the developed system consists of a prism part and an imaging part. Both parts are optimized to reduce the front size and weight of the system. In order to make the parallax sights, parallax angle was determined to be 8 degrees between two optical systems.

Characterization of Microfluidic Channels using DVD Pick-up Fluorescent Scanner (광 픽업 방식 형광스캐너를 이용한 미소유체 특성 분석)

  • Yim, Vit;Kim, Jae-Hyun;Lee, Seung-Yop;Park, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1102-1106
    • /
    • 2008
  • Microfluidics deals with the behavior, precise control and manipulation of fluids at a micro scale. It has become increasingly prevalent in various applications such as biomedical applications (diagnostics, therapeutics, and cell/tissue engineering), inkjet head, and fuel cells etc. The issue of inspection and characterization of microfluidics has emerged as a major consideration in design, fabrication, and detection of microfluidic devices. In this paper, we characterize a diffusion based mixing in Y-microchannel using a fluorescent optical scanner based on a DVD pick-up module, which is widely used in optical storages. Using fluorescent dye, we measure the fluorescent intensity that represents the mixing patterns in Y-microchannel. We also compare these experimental results with computational fluid dynamics (CFD) simulation ones. It is shown that the proposed optical scanner can be used as an alternative measurement system with high performance and cost-effectiveness, compared to conventional optical tools such as epifluorescent microscopes using high resolution CCD camera and confocal microscopes with photomultiplier (PMT) detectors.