• Title/Summary/Keyword: Optical radius

Search Result 265, Processing Time 0.022 seconds

Fluorine-Doping Effect on Structural and Optical Properties of ZnO Nanorods Synthesized by Hydrothermal Method

  • Yoon, Hyunsik;Kim, Ikhyun;Kang, Daeho;Kim, Soaram;Kim, Jong Su;Lee, Sang-Heon;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.204.1-204.1
    • /
    • 2013
  • Fluorine, the radius of which is close to that of oxygen, could be an appropriate anion doping candidate. A lower lattice distortion could be expected for F doping, compared with Al, Ga, and In doping. F-doped ZnO (FZO) and undoped ZnO nanorods were grown onto glass substrate by the hydrothemal method. The doping level in the solution, designated by F/Zn atomic ratio of was varied from 0.0 to 10.0 in 2.0 steps. To investigate the effects of the structure and optical properties of FZO nanorods were investigated using X-ray diffraction, UV-visible spectroscopy and photoluminescence (PL). For the PL spectra, the maximum peak position of NBE moves to higher energy, from 0 to 4 at.%. As the doping concentration increases, the maximum peak position of NBE gradually moves to lover energy, from 4 to 10 at.%.

  • PDF

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

  • Lee, Dong-Jin;Park, Se-Geun;Lee, Seung-Gol;O, Beom-Hoan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.538-542
    • /
    • 2013
  • We propose a simple model to elucidate the dispersion behavior of spiraling modes on silver nanowire by finding correspondence parameters and building a simple equivalent relationship with the planar insulator-metal-insulator geometry. The characteristics approximated for the proposed structure are compared with the results from an exact solution obtained by solving Maxwell's equation in cylindrical coordinates. The effective refractive index for our proposed equivalent model is in good agreement with that for the exact solution in the 400-2000 nm wavelength range. In particular, when the radius of the silver nanowire is 100 nm, the calculated index shows typical improvements; the average percentage error for the real part of the effective refractive index is reduced to only 5% for the $0^{th}$ order mode (11.9% in previous results) and 1.5% for the $1^{st}$ order mode (24.8% in previous results) in the 400-800 nm wavelength range. This equivalent model approach is expected to provide further insight into understanding the important behavior of nanowire waveguides.

Spiral Arm Features in Disk Galaxies: A Density-Wave Theory

  • Kim, Yonghwi;Ho, Luis C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.2-34.2
    • /
    • 2019
  • Several observational results show a tighter pitch angle at wavelengths of optical and near-infrared than those that are associated with star formation, which is in agreement with the prediction of the density wave theory. In my recent numerical studies, the dependence of the shock positions relative to the potential minima is due to the tendency that stronger shocks form farther downstream. This causes a systematic variation of the perpendicular Mach number, with radius and makes the pitch angle of the gaseous arms smaller than that of the stellar arms, which supports the prediction of the density-wave theory, independently. However, some observations still give controversial results which show similar pitch angles at wavelengths, and there is no statistical study comparing observations and numerical models directly. By analyzing optical image of disk galaxies in the Carnegie-Irvine Galaxy Survey (CGS), I measured the physical values of stellar and gaseous arms such as their strength, length, and pitch angles. For direct comparison with numerical results, I analyzed more than 30 additional numerical models with varying the initial parameters in model galaxies. In this talk, I will present results both of observational and numerical samples and discuss the physical properties of spiral structures based on the density-wave theory.

  • PDF

Comparison of Slim Appearance for 2D Image and 3D Virtual Clothing Images Based on Stripe Arrangement (스트라이프 조건에 따른 2차원 이미지와 3차원 가상착의 이미지의 착용효과 비교)

  • Park, Soyoung;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.2
    • /
    • pp.321-330
    • /
    • 2022
  • This study analyzed the difference between 2D image and 3D virtual clothing images based on stripe arrangement to obtain fundamental data for slim appearance. First, the slimming effect according to the three types of stripe ratio was examined. Subsequently, the slimming effects of seven types of one-piece dress designs according to the stripe location were analyzed. Subjective ranking was evaluated. The width items and radius of curvature were measured for the image's respective parts. Consequently, in 2D image and 3D virtual clothing images, the one with the narrowest stripe ratio was evaluated as the slimmest; however, the conditions for the slimming effect were different. In the seven one-piece dress designs, a difference was apparent in the ranking of the 2D image and 3D virtual clothing images. In the 3D virtual clothing image, arranging the stripes on the entire garment proved inefficient. The stripes were curved according to the curvature of the human body, creating an optical illusion that differed from that of the 2D image.

The effects of the scattering opacity and the color temperature on numerically modelling of the first peak of type IIb supernovae

  • Park, Seong Hyun;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2020
  • A type IIb supernova (SN IIb) is the result of core-collapse of a massive star which lost most of its hydrogen-rich envelope during its evolution. The pre-SN progenitor properties, such as the total radius and the mass of the hydrogen-rich envelope, can widely vary due to the mass-loss history of the progenitors. Optical light curves of SNe IIb are dominated by energy released by the hydrogen recombination and the radioactive decay of 56Ni in the early and late epochs respectively. This may result in distinctive double peaked light curves like the one observed in SN 1993J. The first peak, caused by the hydrogen recombination, can be modelled with numerical simulations providing information on the pre-SN progenitor properties. We compare two radiation-hydrodynamics codes, STELLA and SNEC, that are frequently used in SNe modelling, and investigate the effect of opacity treatment on the temporal evolution of the color temperature of SNe and eventually on the optical light curves. We find that with a proper treatment of the scattering opacity, SNe IIb models exploded from the progenitor models evolved with latest stellar evolution model hardly match the observational data. We also discuss the smaller scale features found in the models during hydrogen recombination phase.

  • PDF

Analysis of anterior and posterior corneal spherical aberration with age in the korean (한국 성인의 연령에 따른 각막 전후면 구면수차에 관한 분석)

  • Song, Yun-Young;Jung, Mi-A;Kang, In-San;Choi, Ji-Young
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.315-320
    • /
    • 2013
  • We have investigated the variation of spherical aberration of the anterior and posterior surface in a Korean sample population with various age between 20 to 71 years old. We used Pentacam (Oculus Inc., Germany) to measure the corneal radius, asphericity, and spherical aberration of 290 patients with normal cornea. There were negative correlation between corneal anterior radius and spherical aberration(r = -0.22, p<0.0001), and, there were negative correlation between corneal posterior radius and spherical aberration(r=-0.27, p < 0.0001). There were positive correlation between anterior asphericity and spherical aberration(r = 0.24, p < 0.0001), however there were negative correlation between posterior asphericity and spherical aberration(r = -0.17, p=0.00288).The average of anterior spherical aberration and posterior spherical aberration was $0.482{\pm}0.099{\mu}m$ and $-0.098{\pm}0.029{\mu}m$. The average of spherical aberration was $0.385{\pm}0.097{\mu}m$. There were significant positive correlations between anterior spherical aberration and age(r = 0.227, p<0.0001), and there were positive correlations between posterior aberration and age(r = 0.349, p<0.0001). It is considered that this data can be used as basic information for furture studies for improving the quality of vision of modern human and, through the analysis of the spherical aberration of cornea was to provide a better understanding of the optical part of the Korean's eye.

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

OPTICAL PROPERTY AND ALIGNMENT OF KAO WIDE FIELD TELESCOPE (NEOPAT-3) (광시야 망원경 3호기 (NEOPAT-3)의 광학계 특성 및 조정)

  • Yuk, In-Soo;Kyeong, Jae-Mann;Yoon, Joh-Na;Yoon, Jae-Hyuck;Yim, Hong-Suh;Moon, Hong-Kyu;Han, Won-Yong;Byun, Yon-Ik;Kang, Yong-Woo;Yu, Sung-Yeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.417-428
    • /
    • 2004
  • We have investigated the optical property of the KAO(Korea Astronomy Observatory) wide field telescope (named NEOPAT-3; Near Earth Object and Satellite Patrol-3) and aligned optical system. The NEOPAT-3 is restricted to V,R,I-filters because of the refractive property of the correcting lens system. Because of the fast focal ratio, the optical performance of the NEOPAT-3 is very sensitive to its alignment factors of the optical system. To make the spot radius smaller than $8{\mu}m$ in rms over 2degree${\times}2$degree field, the optical system must satisfy the following conditions: 1) The tilt error between detector plane and focal plane should be less than 0.05degree. 2) The decenter error between the primary mirror and the correcting lens system should be less than 1mm. 3) The distance error between the primary mirror and the correcting lens system should be less than 2.3mm. In order to align the optical system accurately, we measured the aberrations of the telescope quantitatively by means of curvature sensing technique. NEOPAT-3 is installed temporary on the roof of the TRAO(Taeduk Radio Astronomy Observatory) main building to normalize system performance and to develop automatic observation.

Performance Improvement of Near Earth Space Survey (NESS) Wide-Field Telescope (NESS-2) Optics

  • Yu, Sung-Yeol;Yi, Hyun-Su;Lee, Jae-Hyeob;Yim, Hong-Suh;Choi, Young-Jun;Yang, Ho-Soon;Lee, Yun-Woo;Moon, Hong-Kyu;Byun, Yong-Ik;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS) located at Siding Spring Observatory (SSO) in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS) $\lambda$/10 in order to obtain a stellar full width at half maximum (FWHM) below $28\;{\mu}m$. However, we started to figure the mirror for the target value of RMS $\lambda$/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS $\lambda$/20 on the table of polishing machine, and RMS $\lambda$/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in $39.8\;{\mu}m$ of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of $27\;{\mu}m$ after re-installation of the optical system into SSO NESS Observatory in Australia.

Investigation of Source Dependent Optical and Microphysical Characteristics of Aerosol Using Multi-wavelength Raman Lidar in Anmyun, Korea (다파장 라만 라이다를 이용한 발생지에 따른 안면도 지역 에어러솔의 광학적 및 미세물리적 특성)

  • Noh, Young-Min;Lee, Han-Lim;Muller, Detlef
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.554-566
    • /
    • 2010
  • We present optical and microphysical particle properties of aerosol retrieved by multi-wavelength Raman lidar at Anmyun island ($36.32^{\circ}N$, $126.19^{\circ}E$), Korea. The results present aerosol properties in various height layers of the atmospheric pollution layers observed over the Korean peninsula on eight consecutive days (27, 28, 29, 30 and 31 May, 4, 5 and 7 June) in 2005 at Anmyun island. We found anthropogenic pollution on 27, 28, and 29 May and local haze on other measurement days. The origin of the particle plumes was determined by simulations of FLEXPART. The source regions of the particles resulted in rather clear differences between the optical and microphysical properties of the pollution layers. The single-scattering albedo of anthropogenic aerosols from China ($0.91{\pm}0.01$ at 532 nm) were lower than the single-scattering albedo of local haze aerosols ($0.95{\pm}0.01$ at 532 nm). Local haze aerosols show larger effective radii of $0.24{\pm}0.02\;{\mu}m$ at relative humidity of 55~75%. The effective radii of anthropogenic aerosols are $0.20{\pm}0.2\;{\mu}m$ and $0.27\;{\mu}m$ at relative humidity of 25~50%.