• Title/Summary/Keyword: Optical properly

Search Result 122, Processing Time 0.031 seconds

Optical encryption of multiple images using amplitude mask and 2D chaos function (진폭 마스크와 2D 카오스 함수를 이용한 다중 이미지 광학 암호화)

  • Kim, Hwal;Jeon, Sungbin;Kim, Do-Hyung;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.2
    • /
    • pp.50-54
    • /
    • 2014
  • Object image using DRPE(Double Random Phase Encryption) in 4f system is encrypted by space-division method using amplitude mask. However, this method has the weakness for the case of having partial data of amplitude mask which can access the original image. To improve the security, we propose the method using the 2-dimension logistic chaos function which shuffles the encrypted data. It is shown in simulation results that the proposed method is highly sensitive to chaos function parameters. To properly decrypt from shuffled encryption data, below 1e-5 % errors of each parameter should be required. Thus compared with conventional method the proposed shows the higher security level.

Study on Analysis of Output Polarization of Lyot-Type High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Structure (편광상이 고리 구조 기반 Lyot형 고차 광섬유 빗살 필터의 출력 편광 분석에 관한 연구)

  • Jo, Songhyun;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, we investigated the output polarization of a Lyot-type optical fiber comb filter based on a polarization-diversity loop structure. It was found that the output state of polarization (SOP) of the filter made a wavelength-dependent evolution, and the spectral periods of the output SOP variation in flat-top and lossy flat-top band modes were the channel separation of the filter and its half, respectively. For a certain input SOP, the filter could pass or reject specific spectral sections by adding and controlling an output analyzer. In particular, it was theoretically anticipated that the filter with the output polarizer could provide the fine continuous tuning of its pass band center in a wavelength range corresponding to the ${\pm}9.5%$ of channel spacing(0.8nm) when the input SOP was properly adjusted. It is expected that this tuning function can be effectively applied to suppress unwanted spectral portions in modulated optical signals.

Phase Modulation effects on the imamging performance of the binocular objective having rotationally symmetrical aberrations (위상변조가 회전대칭적 수차를 갖는 쌍안경 결상력에 미치는 효과)

  • 홍경희;오병완;정창섭
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.143-147
    • /
    • 1992
  • 1)iscussed in this paper are the effects of phase modulation on the line spread functions (LSF) and MTFs of ;I binocular objective system. The binocular objective lens is made in Korea. It has rotationally symmetric aberrations. The LSFs and MTFs are measured experimentally. The phase modulation is carried out by applying phase retardation $\pi$ on the aperture. The area where the phase is not retarded presents a double annular type. The OTF curves of phase modulated aperture are compared with that of unmodulated aperture. The comparison shows that there is the aberration compensation effect in aberration loaded system. Therefore the performance of many optical system can be improved without any loss of light energy by properly modulating the phase on the aperture.

  • PDF

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

Measurement of the 3-Dimensional Shapes of Specular Objects by Using Double Pass Retroreflection (재귀반사 특성을 이용한 경면물체의 3차원 형상 측정)

  • Park, W.S.;Ryu, Y.K.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.64-72
    • /
    • 1996
  • This paper is aimed to develop an optical method for measuring 3-dimensional shapes of specular objects having curved surfaces. The existing methods measuring the shapes of specular objects have several common disadvantages: they may not work properly if the surface is highly specular like mirror surface or if the reflectance property is not uniform over the surface. And, they often require the a priori knowledege about the surface reflectance. To overcome these disadvantages, the measurement using double pass retroreflection method is proposed in this paper. For this measurement principle, an experimental measuring system is designed and prepared which is composed of a galvanometer scanner, a beam splitter, a laser source, a CCD camera, and a reflector made of retroreflective material. To verify the effectiveness of the measurement system a series of experiments are performaed for various specular objects. The results observed from the experiments show that the developed optical sensing system can be an effective mean of measuring the 3-D shapes of specular objects.

  • PDF

Attitude Scenarios of Star Observation for Image Validation of Remote Sensing Satellite (영상검정을 위한 지구관측위성의 별 관측 자세 시나리오 생성 기법)

  • Yu, Ji-Woong;Park, Sang-Young;Lee, Dong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.807-817
    • /
    • 2012
  • An optical payload needs to be validated its image performance after launched into orbit. The image performance was validated by observing star because ground site contains uncertainties caused by atmosphere, time of the year, and weather. Time Delayed and Integration(TDI) technique, which is mostly used to observe the ground, is going to be used to observe the selected stars. A satellite attitude scenario was also developed to observe the selected stars. The scenario is created to enable TDI to operate. Rotation angles of optical payload are determined in order for the selected stars to properly be passed at a desired angular velocity about rotation axis. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit. In addition, a quaternion for pointing selected stars is calculated minimizing the path from a given arbitrary attitude of satellite.

2D transition-metal dichalcogenide (WSe2) doping methods for hydrochloric acid

  • Nam, Hyo-Jik;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.291.2-291.2
    • /
    • 2016
  • 3D semiconductor material of silicon that is used throughout the semiconductor industry currently faces a physical limitation of the development of semiconductor process technology. The research into the next generation of nano-semiconductor materials such as semiconductor properties superior to replace silicon in order to overcome the physical limitations, such as the 2-dimensional graphene material in 2D transition-metal dichalcogenide (TMD) has been researched. In particular, 2D TMD doping without severely damage of crystal structure is required different conventional methods such as ion implantation in 3D semiconductor device. Here, we study a p-type doping technique on tungsten diselenide (WSe2) for p-channel 2D transistors by adjusting the concentration of hydrochloric acid through Raman spectroscopy and electrical/optical measurements. Where the performance parameters of WSe2 - based electronic device can be properly designed or optimized. (on currents increasing and threshold voltage positive shift.) We expect that our p-doping method will make it possible to successfully integrate future layered semiconductor devices.

  • PDF

Electrical and Optical Characteristics of Flat Fluorescent Lamp for LCD Back-lighting (LCD 후면 광원용 FEL의 전기적 및 광학적 특성)

  • 김명녕;권순석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.725-729
    • /
    • 2003
  • In this paper, a mercury-free flat discharge lamp with opposite electrode structure, a couple of phosphor layer and discharge vessel has been studied for LCD back-lighting. When the drive voltage conditions were set properly, a uniform discharge generates over entires emitting surface. The firing voltage was increased with increasing the discharge gas pressure. It was considered that this tendency was resulted from the decrease of mean free paths due to the increase of discharge gas pressure. The maximum luminance of 2700[cd/m2] was obtained in the green emitting FFL.

A Study on Shape Design of NFR Suspension for Optimal Dynamic Characteristics (NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구)

  • Eun, Gil-Soo;Kim, Noh-Yu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.771-776
    • /
    • 2002
  • Optimal shape of the NFR suspension is studied and developed to improve the dynamic performance and reduce the vibration of the suspension system including a optical head slider. Since accurate position control and stability of the slider motion are highly required in NFR due to the narrower track width and the heavier slider than HDD slider with the low flying height, the dynamic characteristics of the suspension are very important to the mechanical performance of the system. The first natural frequencies in flexural and lateral motion of the suspension are critical factors affecting the dynamics and stability of the flying head, so that the dynamic parameters should be designed properly to avoid an excessive vibration or a crash of the slider on the disk. This paper optimizes the shape of the suspension based on homogenization method in NASTRAN and develops a new suspension shape for NFR system. The suspension is tested on experiment to verify the improvement of the dynamic characteristics.

  • PDF

Fundamental condition for the realization of maximal contrast and brightness in liquid crystal display device: II. Polychromatic case (액정표시소자에서 화면의 명암대비와 밝기를 극대화하는 기본조건: II. 다색광의 경우)

  • 양병관;김진승;노봉규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.498-503
    • /
    • 2003
  • We analyze the electro-optic polarization transmission characteristics of liquid crystal cells in the Poincare sphere representation. We determine fundamental conditions on maximizing of brightness and contrast ratio of liquid crystal display devices for polychromatic light by use of retardation films. For optimizing two colors, at least two properly designed retardation films are needed, and for three wavelengths, either it can be approximated to the two-color case or three retardation films are needed.