• 제목/요약/키워드: Optical lattice

검색결과 311건 처리시간 0.022초

2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장 (Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect)

  • 김태언;문종하;김선훈;김두근;김진혁
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.697-702
    • /
    • 2011
  • Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.

Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권4호
    • /
    • pp.164-168
    • /
    • 2011
  • Nanocrystalline cadmium sulphide (CdS) thin films were prepared using chemical bath deposition (CBD), and the structural, optical and photoconductive properties were investigated. The crystal structure of CdS thin film was studied by X-ray diffraction. The crystallite size, dislocation density and lattice constant of CBD CdS thin films were investigated. The dislocation density of CdS thin films initially decreases with increasing film thickness, and it is nearly constant over the thickness of 2,500 ${\AA}$. The dislocation density decreases with increasing the crystallite size. The Urbach energies of CdS thin films are obtained by fitting the optical absorption coefficient. The optical band gap of CdS thin films increases and finally saturates with increasing the lattice constant. The Urbach energy and optical band gap of the 2,900 A-thick CdS thin film prepared for 60 minutes are 0.24 eV and 2.83 eV, respectively. The activation energies of the 2,900 ${\AA}$-thick CdS thin film at low and high temperature regions were 14 meV and 31 meV, respectively. It is considered that these activation energies correspond to donor levels associated with shallow traps or surface states of CdS thin film. Also, the value of ${\gamma}$ was obtained from the light transfer characteristic of CdS thin film. The value of ${\gamma}$ for the 2,900 A-thick CdS thin film was 1 at 10 V, and it saturates with increasing the applied voltage.

$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ 단결정의 광학적 특성과 열역학 함수 추정 (Optical Properties and Thermodynamic Function Properties of Undoped and Co-Doped $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ Single Crystals)

  • 현승철;박현;박광호;오석균;김형곤;김남오
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권7호
    • /
    • pp.275-281
    • /
    • 2003
  • $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ and $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ single crystals were grown by CTR method. The grown single crystals have defect chalcopyrite structure with lattice constant a=5.5966$\AA$, c=10.8042$\AA$ for the pure, a=5.6543$\AA$, c=10.8205$\AA$ for the Co-doped single crystal, respectively. The optical energy band gap was given as indirect band gap. The optical energy band gap was decreased according to add of Co-impurity Temperature dependence of optical energy band gap was fitted well to the Varshni equation. From this relation, we can deduced the entropy, enthalpy and heat capacity. Also, we can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_{d}$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

The relation between optical diffraction pattern and domain size in blue phase

  • Lee, Ho-Hyun;Kim, Jong-Hyun;Kikuchi, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.942-944
    • /
    • 2009
  • Blue phase shows several different reflection colors from the randomly oriented domains and crystal direction. Also there are variations in the size of domains. The domain size is dependent on the temperature gradient. With smaller cooling rate of temperature, the domain size was increased compared with rapid cooling. With injection of light of specific wavelength, we find that the diffraction patterns were occurred around the light spot in the cell of blue phase. It was supposed to be from the matching of the phase retardation and domain size. However, actually the diffraction pattern is reflecting the lattice structure in double twist of the blue phase. The lattice constant from the radius of diffraction patterns shows very similar one from the reflection spectrum, which indicates the internal lattice constant in double twist of the blues phase.

  • PDF

Synthesis, Optical and Electrical Studies of Nonlinear Optical Crystal: L-Arginine Semi-oxalate

  • Vasudevan, P.;Sankar, S.;Jayaraman, D.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.128-132
    • /
    • 2013
  • L-Arginine semi-oxalate (LASO) single crystal has been grown by solution growth technique at room temperature. The crystal structure and lattice parameters were determined for the grown crystal by single crystal X-ray diffraction studies. Photoluminescence studies confirm the violet fluorescence emission peak at 395 nm. Optical constants like band gap, refractive index, reflectance, extinction coefficient and electric susceptibility were determined from UV-VIS-NIR spectrum. The dielectric constant, dielectric loss and ac conductivity of the compound were calculated at different temperatures and frequencies to analyze the electrical properties. The solid state parameters such as plasma energy, Penn gap, Fermi energy and polarizability were calculated to analyze second harmonic generation (SHG). Nonlinear optical property was discussed to confirm the SHG efficiency of the grown crystal.

Illuminance Distribution and Photosynthetic Photon Flux Density Characteristics of LED Lighting with Periodic Lattice Arrangements

  • Jeon, Hee-Jae;Ju, Kang-Sig;Joo, Jai-Hwang;Kim, Hyun-Gyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.16-18
    • /
    • 2012
  • LED lighting systems that combine lighting capability, emotional and physiological characteristics are required for lighting source and multifunctional applications. In this work, Simulation studies using optical analysis software packages, Light Tools, are presented. This is done to estimate the uniformity ratio of illuminance and photosynthetic photon flux density (PPFD) of the periodic 2D lattice arrangements, such as square, diamond, two-way bias quadrangular, hexagonal, and Kagome lattices, under the same transmissivity, absorptance and reflectivity. It has been found out that the two-dimensional Kagome lattice arrangement exhibited high uniformity ratio of illuminance and PPFD compared to other lattices. Accordingly, these results can be used to guide a design and improve the lighting environment which in turn would maximize the uniform distributions of illuminance.

Crystal Growth and Spectroscopic Investigation of Yb,Er:$YCa_4O{(BO_3)}_3$ for 1.55$\mu m$ Laser

  • Jeong, Suk-Jong;Yu, Young-Moon
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1999년도 제16회 광학 및 양자전자 학술발표회Proceedings of 16th Optics and Quantum Electronics Conference, 1999
    • /
    • pp.220-221
    • /
    • 1999
  • Single crystals of Yttrium Calcium Oxyborate (YCOB) doped with different concentrations of Er3+ and Yb3+ ions were growth by Czochralski method. High qualities of crystals in morphology and transparency were obtained . Analysis on crystal structure and lattice parameters were performed by X-ray diffraction method. It was found that congruent melting composition is YCA4.2O1.2(BO3)3. Absorption and fluorescence properties of grown crystals were also reported.

  • PDF

실리콘 기반 광자결정 나노 공진기의 공진 파장 제어 (Resonant wavelength control of an Si-based photonic crystal nanocavity)

  • 송봉식
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 하계학술발표회 논문집
    • /
    • pp.329-330
    • /
    • 2008
  • We experimentally demonstrate resonant-wavelength control of a series of an Si-based photonic crystal nanocavity. The cavities show a linear dependence on these parameters, a 1 nm increase of lattice constant leading to 4.2 nm increase of the resonant wavelength. The results have a small standard deviation of wavelength 1.1 nm between samples on a single chip.

  • PDF

사각형 광결정 슬랩에서 제작된 상온 발진 광결정 밴드 가장자리 레이저 (Room temperature photonic band edge lasers from two-dimensional square lattice photonic crystal slabs)

  • 권순홍;김국현;이용희
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.236-237
    • /
    • 2003
  • 최근 공진기 형태가 없는 2차원 광결정(photonic crystal) 레이저가 그것의 2차원 되먹임과 거울 없는 발진 현상과 같은 특이한 특성으로 인해 많은 관심을 끌고 있다. 이러한 레이저는 photonic band edge에서 빛의 군속도의 감소에 근거하여 작동한다. 이 photonic crystal band edge 레이저는 2차원 형태의 Distributed-Feedback(DFB) 레이저 형태로 볼 수 있다. 지금까지 보고된 레이저는 0.1 정도의 매우 작은 굴절률 변화를 가지고 있고 크기가 (100$\mu$m)$^2$이상으로 상당히 크다. (중략)

  • PDF

동일한 면적을 가지는 격자의 모양에 따른 광자 밴드갭 특성에 관한 연구 (Photonic Band Gap Characteristics by Shape of Lattice with Uniformity Area)

  • 김기욱;오범환;이승걸;박세근;이일항
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.226-227
    • /
    • 2003
  • 광자 크리스탈 (Photonic Crystals)은 서로 다른 유전체의 주기적인 구조로 이루어져 있으며, 전자기파가 특정한 주파수 범위에서 전파하지 못하고 차단되는 영역인 광자 밴드갭 (Photonic Band Gap)이 존재한다. 이러한 광자 밴드갭의 존재로 인하여 빛의 흐름을 조절할 수 있다는 점 때문에 반사거울, 휘어진 도파로(bent waveguide), 레이저, 채널 드롭핑 필터(channel dropping filter) 등 여러 가지 다양한 분야에 응용될 수 있다. (중략)

  • PDF