• Title/Summary/Keyword: Optical imaging

Search Result 1,293, Processing Time 0.021 seconds

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Multiple-image Encryption and Multiplexing Using a Modified Gerchberg-Saxton Algorithm in Fresnel-transform Domain and Computational Ghost Imaging

  • Peiming Zhang;Yahui Su;Yiqiang Zhang;Leihong Zhang;Runchu Xu;Kaimin Wang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.362-377
    • /
    • 2023
  • Optical information processing technology is characterized by high speed and parallelism, and the light features short wavelength and large information capacity; At the same time, it has various attributes including amplitude, phase, wavelength and polarization, and is a carrier of multi-dimensional information. Therefore, optical encryption is of great significance in the field of information security transmission, and is widely used in the field of image encryption. For multi-image encryption, this paper proposes a multi-image encryption algorithm based on a modified Gerchberg-Saxton algorithm (MGSA) in the Fresnel-transform domain and computational ghost imaging. First, MGSA is used to realize "one code, one key"; Second, phase function superposition and normalization are used to reduce the amount of ciphertext transmission; Finally, computational ghost imaging is used to improve the security of the whole encryption system. This method can encrypt multiple images simultaneously with high efficiency, simple calculation, safety and reliability, and less data transmission. The encryption effect of the method is evaluated by using correlation coefficient and structural similarity, and the effectiveness and security of the method are verified by simulation experiments.

Nanoparticle Contrast in Magneto-Motive Optical Doppler Tomography

  • Kim, Jee-Hyun;Oh, Jung-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.99-104
    • /
    • 2006
  • We introduce a novel contrast mechanism for imaging superparamagnetic iron oxide (SPIO) nanoparticles (average diameter ${\sim}100nm$) using magneto-motive optical Doppler tomography (MM-ODT), which combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect the nanoparticles flowing through a glass capillary tube. A solenoid cone-shaped ferrite core extensively increased the magnetic field strength ($B_{max}=1\;T,\;{\Delta}|B|^2=220T^2/m$) at the tip of the core and also focused the magnetic force on targeted samples. Nanoparticle contrast was demonstrated in a capillary tube filled with the SPIO solution by imaging the Doppler frequency shift which was observed independent of the flow rate and direction. Results suggest that MM-ODT may be a promising technique to enhance SPIO nanoparticle contrast for imaging fluid flow.

Medical Applications of Near Infrared Spectroscopy and Diffuse Optical Imaging (Review) (근적외선 분광법 및 확산 광 영상법의 최근 연구 동향)

  • Lee, Seung-Duk;Kwon, Ki-Won;Koh, Dal-Kwon;Kim, Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.89-98
    • /
    • 2008
  • NIRS (Near-infrared Spectroscopy) and DOI (Diffuse Optical Imaging) are relatively new, non-invasive, and non-ionizing methods that measure or image optical properties (Scattering and Absorption Coefficient) and physiological properties (Water Fraction, concentration of Oxy-, Deoxy-Hemoglobin, Cytochrome Oxidase, etc) of biological tissues. In this paper, three different types of NIRS systems, mathematical modeling, and reconstruction algorithms are described. Also, recent applications such as functional brain imaging, optical mammography, NIRS based BMI (Brain-Machine Interface), and small animal study are reviewed.

The Optical Design of Miniaturized Microscope Objective for CARS Imaging Catheter with Fiber Bundle

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.424-430
    • /
    • 2010
  • In coherent anti-Stokes Raman scattering (CARS) microscopy reported until now, conventional microscope objectives are used, so that they are limited for introduction into a living body. Gradient-index (GRIN) rod lenses might be a solution for miniaturized microscope objectives for in-vivo CARS microscopy. However, due to the inherent large amount of chromatic aberration, GRIN rod lenses cannot be utilized for this purpose. CARS imaging catheter, composed of miniaturized microscope objective and fiber bundle, can be introduced into a living body for minimally invasive diagnosis. In order to design the catheter, we have to first investigate design requirements. And then, the optical design is processed with design strategies and intensive computing power to achieve the design requirements. We report the miniaturized objective lens system with diffraction-limited performance and completely corrected chromatic aberrations for an in-vivo CARS imaging catheter.

Risley Prisms Scanning Optical Imaging System Using Liquid Crystal Spatial Light Modulator

  • Song, Dalin;Chang, Jun;Zhao, Yifei;Zhao, Qing
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.215-219
    • /
    • 2019
  • Chromatic aberrations induced by Risley prisms made of a single material can be substantially compensated using a liquid crystal spatial light modulator while still keeping the prism pairs compact, simple and lightweight. A ${\pm}10^{\circ}$ optical scanning imaging system with ${\pm}2^{\circ}$instantaneous field based on LC-SLM correction is designed as an example. The ultimate simulation results show that this kind of scheme is an effective way of improving imaging performance dynamically across the full field of scanning.

Implementation of Cost-effective Common Path Spectral Domain Free-hand Scanning OCT System

  • Shoujing Guo;Xuan Liu;Jin U. Kang
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • Optical coherence tomography (OCT) is being developed to guide various ophthalmic surgical procedures. However, the high cost of the intraoperative OCT system limits its availability mostly to the largest hospitals and healthcare systems. In this paper, we present a design and evaluation of a low-cost intraoperative common-path free-hand scanning OCT system. The lensed fiber imaging probe is designed and fabricated for intraocular use and the free-hand scanning algorithm that could operate at a low scanning speed was developed. Since the system operates at low frequencies, the cost of the overall system is significantly lower than other commercial intraoperative OCT systems. The assembled system is characterized and shows that it meets the design specifications. The handheld OCT imaging probe is tested on multilayer tape phantom and ex-vivo porcine eyes. The results show that the system could be used as an intraoperative intraocular OCT imaging device.

Image Reconstruction Method for Photonic Integrated Interferometric Imaging Based on Deep Learning

  • Qianchen Xu;Weijie Chang;Feng Huang;Wang Zhang
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.391-398
    • /
    • 2024
  • An image reconstruction algorithm is vital for the image quality of a photonic integrated interferometric imaging (PIII) system. However, image reconstruction algorithms have limitations that always lead to degraded image reconstruction. In this paper, a novel image reconstruction algorithm based on deep learning is proposed. Firstly, the principle of optical signal transmission through the PIII system is investigated. A dataset suitable for image reconstruction of the PIII system is constructed. Key aspects such as model and loss functions are compared and constructed to solve the problem of image blurring and noise influence. By comparing it with other algorithms, the proposed algorithm is verified to have good reconstruction results not only qualitatively but also quantitatively.