• Title/Summary/Keyword: Optical fiber fence

Search Result 8, Processing Time 0.021 seconds

Detection of Excited Vibration frequency on the Latticed Fence Structure Using a Distributed Fiber Optic Sensor (격자형 구조물의 외부 진동 주파수 탐지를 위한 분포형 광섬유 센서 설계 및 실험)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.234-237
    • /
    • 2002
  • To detect external vibration signals on the latticed fence structure, distributed fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 170cm in width and 180cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. It was verified the sensitivity of the Sagnac interferometer using the PZT phase modulator. Fiber optic external vibration signal spplied to the latticed fence structure from 100Hz to several kHz. The interferometeric fiber optic sensor detected the excited vibration signal very effectively without any signal processing. The detected optical signals were compared and analyzed to the detected acclerometer signals.

  • PDF

Exciting Frequency Detection of Latticed fence Structure Using Fiber Optic Interferometer Sensor (간섭계형 광섬유 센서를 이용한 격자형 구조물의 외부 가진 진동수 탐지)

  • 이종길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.142-148
    • /
    • 2004
  • In this paper, to detect exciting frequency on the latticed fence structure, fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 180 cm wide and 180 cm high, the optical fiber, 50 m in length, distributed and fixed on the latticed structure. Single mode fiber, a laser with 1,550 m wavelength, and $3{\times}3$ coupler were used. Excited vibration signal applied to the latticed structure from 200 Hz to 1 KHz. The detected optical signals were compared to the detected acceleration signals and analyzed on the time and frequency domain. Based on the experimental results, fiber optic sensor using Sagnac interferometer detected exciting frequency, effectively. This system can be applied to the structural health monitoring system.

Study for security system of Railroad bed structure using optical fiber (철도 노반 구축물의 광섬유 센서를 활용한 보안시스템에 관한 연구)

  • Kim Sung Won;Song Oak Young;Bae Yoon;Hwang Sung Man
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.153-158
    • /
    • 2004
  • The security system using optical fiber is a system, circulating infrared rays laser pulse on the optical fiber which is attached on the security fence to prevent invasion, which can show invasion position with visible and audible signal on the situation monitor if an invader cut or pull the security fence with minuteness of 10m. The optical fiber can be also applied for the bed structure stability monitoring system of high speed train as well as security system. To apply this system for high speed railroad bed structures, this system will give an alarm if it detect excessive tension, shrinkage, deflection which is beyond the limit of structure, that will prevent serious railroad accident. In this paper, we like to propose that applying this system for security and structure stability can improve confidence and stability on operation of railways

  • PDF

Detection of excited vibration frequency on the latticed fence structure using a distributed fiber optic sensor (격자형 구조물의 외부 진동 주파수 탐지를 위한 분포형 광섬유 센서 설계 및 실험)

  • Lee, Jongkil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.329.1-329
    • /
    • 2002
  • To detect external vibration signals on the latticed fence structure, distributed fiber optic sensor using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 170cm in width and 180cm in height, the optical fiber, 50m in lengtn, distributed and fixed on the latticed structure. It was verified the sensitivity of the Sagnac interferometer using the PZT phase modulator. Fiber-optic external vibration signal applied to the latticed structure from 100㎐ to several ㎑. (omitted)

  • PDF

Test equipment development and test results analysis of optical fiber fence and OTDR for obstacle detection system (지장물검지장치용 광펜스 및 OTDR 시험설비 개발 및 기능시험결과 분석)

  • Jun, Kyung Han;Choi, Young Hun;Lee, Chang Min
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.269-278
    • /
    • 2018
  • Railway obstacle detecion system has been introduced with high-speed railway in 2004 to prevent accidents by obstacles such as landslide, rockfall and things fallen from the gauntry over the railway. But existing system has some limitation for landslide or fallen obstacle over railway. Therefore, In this study, we suggest new advanced obstacle detection system introducing the OTDR, optical fiber fences and detection cameras. This system can detect depression degree by the force to the fences and video for the specific region as well as detection wire Off condition. We produce and functional tests for fiber fence and OTDR, which are the core parts of the development system, and results were obtained to demonstrate improved detection capabilities. Several functions also been tested to verify the advanced detection performance and got some satisfactory results. Further we will conduct environment tests and field test.

Fiber Optic Sensor Design for the Monitoring of Structural Sound and Vibration (구조물 음향진동 모니터링을 위한 광섬유 센서 설계)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.81-84
    • /
    • 2007
  • In this paper, fiber optic sound and vibration monitoring sensor which is latticed shape structure based on Sagnac interferometer is fabricated and tested in laboratory conditions. To detect external vibrations surface mounted fibers on the latticed steel wire fence with a dimension of 170cm by 180cm is used. To detect external sound frequency the tightened fiber optic itself wire netting fence with a dimension of 50cm by 50cm is used. Experiments for the detection of the excited vibration and sound signals were performed. A small vibrator induced external vibration signal and it is applied to the latticed structure in the range of 100Hz to several kHz. External sound signal applied to the fiber optic sensor net using non-directional sound speaker. The detected optical signals were compared and analyzed to the detected both accelerometer and microphone signals in the time and frequency domain. Based on the experimental results, distributed fiber optic sensor using Sagnac interferometer detected effectively external vibration and sound signal and had a good performance. This system can be expanded to the monitoring of a significant system and to the structural health monitoring system.

  • PDF

An Optical Fiber Perimeter Guard System Using OTDRs (OTDR을 이용한 광섬유 외곽경비시스템에 관한 연구)

  • Chang, Jin-Hyeon;Lee, Yong-Cheol;Shin, Dong-Ho;Oh, Sang-Gun;Lee, Jong-Youn;Jung, Jin-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1236-1243
    • /
    • 2010
  • The perimeter defense system was created and its characteristics were evaluated. It was designed to utilize the fiber sensing device, namely OTDR(Optical Time Domain Reflectometer) which has been used for the maintenance of the optical communication network. An OTDR was constituted by a pulse laser with the nature of 1310nm, +15dBm for the observation of 400 meter optical fence. The high-speed 32-bit processor(S3C2440) has applied to MPU(Main Processor Unit) which helps to improve the performance of OTDR algorithms. Consequently, the maximum error was 0.84 meter on the performance test of the 10km monitoring and the pass criteria of ${\pm}1m$ satisfied in all the sections. The alarm delay time was under 3 sec after detecting the disorder. For the case of secondary trespassing after primary trespassing, the optical switch was installed in OTDR to monitor the secondary trespassing and to measure the multi-point detection. Therefore, this paper shows that the detections of secondary trespassing and multi-point is possible by means of optical switch.