• Title/Summary/Keyword: Optical diffractometry

Search Result 40, Processing Time 0.027 seconds

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time (Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성)

  • Eom, Nu-Si-A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum-Sung
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.

EFFECT OF DEPOSITION METHODS ON PHYSICAL PROPERTIES OF POLYCRYSTALLINE CdS

  • Lee, Y.H.;Cho, Y.A.;Kwon, Y.S.;Yeom, G.Y.;Shin, S.H.;Park, K.J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.862-868
    • /
    • 1996
  • Cadmium sulfide is commonly used as the window material for thin film solar cells, and can be prepared by several techniques such as sputtering, spray pyrolysis, close spaced sublimation (CSS), thermal evaporation, solution growth methods, etc. In this study, CdS films were deposited by thermal evaporation, close spaced sublimation, and solution growth methods, respectively, and the effects of the methods on physical properties of polycrystalline CdS deposited on ITO/glass were investigated. Also, the effects of variously prepared CdS thin films on the physical properties of CdTe deposited on the CdS were investigated. The thickness of polycrystalline CdS films was maintained at $0.3\mu\textrm{m}$ except for the solution grown CdS when $0.2\mu\textrm{m}$ thick CdS was deposited. After the deposition, all the samples were annealed at $400^{\circ}C$ or $500^{\circ}C$ in H2 atmosphere. To investigate physical properties of the deposited and annealed CdS thin films, UV-VIS spectro-photometry, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES), and cross sectional transmission electron microscopy(XTEM) were used to analyze grain size, crystal structure, preferred orientation, optical properties, etc. The annealed CdS showed the bandedge transition at 510nm and the optical transmittance high than 80% for all of the variously deposited films. XRD results showed that CdS thin films variously deposited and annealed had the same hexagonal structures, however, showed different preferred orientations. CSS grown CdS had [103] preferred orientation, thermally evaporated CdS had [002], and CdS grown by the solution growth had no preferred orientation. The largest grain size was obtained for the CSS grown CdS while the least grain size was obtained for the solution grown CdS. Some of the physical properties of CdTe deposited on the CdS thin film such as grain size at the junction and grain orientation were affected by the physical properties of CdS thin films.

  • PDF

Property of MgO with Different Sintering Temperatures under High Pressures (고압 환경에서 소결 온도에 따른 MgO 물성의 변화)

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.608-613
    • /
    • 2012
  • We investigated the property changes of MgO powders sintered at temperatures ranging from $700^{\circ}C$ to $1900^{\circ}C$ for 5minutes at a pressure of 2.7 GPa for a high-pressure high-temperature(HPHT) diamond synthesis process. The physical properties of the sintered MgO powders were characterized by optical microscopy, field emission scanning electron microscopy (FE-SEM), Vickers hardness tests, and by the apparent density, and X-ray diffractometry. An optical micro-analysis showed that white MgO powders became black after sintering due to carbon contamination from the graphite heat source. FE-SEM revealed the growth in the grain size of the MgO powders from $0.3{\mu}m$ to $50{\mu}m$ after sintering at $1700^{\circ}C$. The hardness and apparent density increased to $1800^{\circ}C$ while the samples were dedensified at $1900^{\circ}C$ due to the growth of isolated pores. According to the XRD analysis, no phase transformation occurred in the MgO powders. These results suggest that HPHT-sintered MgO powders can show an accelerated sintering process characterized by grain neck growth, pore connections, isolated pore growth and dedensification in 5 minutes, while these processes with the conventional sintering process take at least 5 hours.

Effects of Eu3+ and Tb3+ Activator Ions on the Properties of SrSnO3 Phosphors (Eu3+와 Tb3+ 활성제 이온이 SrSnO3 형광체의 특성에 미치는 영향)

  • Kim, Jung Dae;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.469-473
    • /
    • 2014
  • $SrSnO_3$ phosphor powders were synthesized with two different contents of activator ions $Eu^{3+}$ and $Tb^{3+}$ using the solid-state reaction method. The structural, morphological, and optical properties of the phosphors were investigated using X-ray diffractometry, field-emission scanning electron microscopy, and fluorescence spectrophotometry, respectively. All the phosphors showed a cubic structure, irrespective of the type and the content ratio of activator ions. For $Eu^{3+}$-doped $SrSnO_3$ phosphors, the intensity of the 620 nm red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ was stronger than that of the 595 nm orange emission signal due to the $^5D_0{\rightarrow}^7F_1$ transition in the range 0.01-0.05 mol of $Eu^{3+}$, but the ratio of the intensity was reversed in the range 0.10-0.20 mol of $Eu^{3+}$. The variation in the emission intensity indicates that the site symmetry of the $Eu^{3+}$ ions around the host crystal was changed from non-inversion symmetry to inversion. For the $Tb^{3+}$-doped $SrSnO_3$ phosphors under excitation at 281 nm, one strong green emission band at 550 nm and several weak bands were observed. These results suggest that the optimum red and green emission signals can be realized when the activator ion content for $Eu^{3+}$- or $Tb^{3+}$-doped $SrSnO_3$ phosphors is 0.20 mol and 0.15 mol, respectively.

The Study for Synthesis and Characteristic of ${\alpha},{\beta}$-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium Phthalocyanine Derivatives (${\alpha},{\beta}$-tetra(phenoxy, 2-naphthoxy, 4-tritylphenoxy) Oxovanadium 프탈로시아닌 유도체의 합성 및 특성에 관한 연구)

  • Son, Dae-Hee;Heo, Jin;Kim, Song-Hyuk;Lee, Seung-Ho;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.638-642
    • /
    • 2010
  • After phthalonitrile derivatives were synthesized by the introduction of phenoxy, 2-naphthoxy or 4-trityl phenoxy group on ${\alpha}$- and ${\beta}$-position, oxovanadyl phthalocyanine (VOPc) derivatives containing electron-rich substituent group at different position were synthesized successfully in this investigation. The chemical structure of samples was determined by the means of $^1H$-NMR, MALDI-TOF mass spectroscopy, and FT-IR spectrometer. Also, optical and chemical properties were determined by the means of UV-Vis spectrometer, X-ray diffractometry, and thermo gravimetry. It was found that the maximum absorbing wavelength of VOPc derivatives ranged from 684 to 726 nm. Also, their solubility and Q-band were enhanced and shifted by the introduction of substitute group, respectively.

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

Morphology, Transparency, and Thermal Resistance of SAN Nanocomposites Containing Organically Modified Layered Double Hydroxides (유기변성 LDH를 사용한 SAN 나노컴포지트의 형태학, 투명성 및 내열성)

  • Kim, Seog-Jun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.287-294
    • /
    • 2012
  • ZnAl-LDH(layered double hydroxide) (Zn:Al=2:1 mole ratio) modified with stearic acid (SA) or oleic acid (OA) was synthesized by a coprecipitation method and compounded to SAN polymer at various contents. All the SAN composites were manufactured by a co-rotating twin-screw extruder and subsequently injection molded into several specimen. Morphology, transparency, and thermal resistance of these composites were evaluated by TEM, XRD(X-ray diffractometry), UV-Vis spectrophotometry, and thermogravimetric analysis. SAN nanocomposites containing OA-$Zn_2Al$ LDH showed better optical transmittance than SAN nanocomposites containing SA-$Zn_2Al$ LDH. All the SAN nanocomposites containing OA-$Zn_2Al$ LDH or SA-$Zn_2Al$ LDH exhibited improvement of thermal resistance at second stage of thermal oxidation. These results were explained by the fact that the interaction between organic modifier and polymer performed an important role in the property improvement of polymer nanocomposites.

Mechanochemical Treatment of Quartz for Preparation of EMC Materials

  • Shin, Hee-Young;Chae, Young-Bae;Park, Jai-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.315-324
    • /
    • 2001
  • Mechanochemical effects that occurred in the fine grinding process of quartz particles using planetary ball mill was investigated. Quartz particles have been frequently utilized for optical materials, semiconductor molding materials. We determined that grinding for a long time can be create amorphous structures from the crystalline quartz by Mechanochemical effects. But, to be produced nano-composite particles that the critical grinding time reached for composite materials in a short time. Henceforth, a qualitative estimation must be conducted on the filler for EMC(Epoxy molding compound) materials. It can be produced mechanochemically treated composite materials and also an integrated grinding efficiency considering of the nano-composite amorphous structured particles. The mechanochemical characteristics were evaluated based on particle morphology, size distribution, specific surface area, density and the amount of amorphous phase materials into the particle surface. The grinding operation in the planetary ball mill can be classified into three stages. During the first stage, initial particle size was reduced for the increase of specific surface area. In the second stage, the specific surface areas increased in spite of the increase in particle size. The final stage as a critical grinding stage, the ground quartz was considered mechanochemically treated particles as a nano- composite amorphous structured particles. The development of amorphous phase on the particle surface was evaluated by X-ray diffractometry, thermal gravity analysis and IR spectrometer. The amount of amorphous phase of particles ground for 2048 minutes was 85.3% and 88.2% by X-ray analysis and thermal gravity analysis, respectively.

  • PDF

Dependence of Magnetic and Magneto-Optic Properties on Deposition Angle in E-Beam EVaporated Co/Pt Multilayer Films (전자빔 증착 Co/Pt 다층박막에서 입사 선속의 방향에 따른 자기 및 자기광학적 성질 변화 연구)

  • 문기석;신성철
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.313-318
    • /
    • 1994
  • We have investigated the effects of deposition angle on magnetic and magneto-optic properties in Co/Pt multilayer thin films. which were prepared bye-beam evaporation on tilted substrates. with varying tilt angle from $0^{\circ}$ to $60^{\circ}$. The structure of the specimens was examined by x-ray diffractometer and scanning electron microscope. and the magnetic and magneto-optical properties were measured by VSM, torque magnetometer, and Kerr loop tracer. X-ray diffractometry revealed that all of the specimens had multilayer structure and growth orientation of column followed the tangent rule but the crystallograpic orientation, <111>, was slightly deviated from the substrate normal even though the deposition angle was increased up to $60^{\circ}$. A decrement of the magnetization and Kerr angle with the deposition angle was related with that of the film density due to increasing porosity. The perpendicular mag¬netic anisotropy was also decreased with increasing the deposition angle.

  • PDF