• Title/Summary/Keyword: Optical data processing

Search Result 361, Processing Time 0.025 seconds

DEEP-South: Round-the-clock Census of Small bodies in the Southern Sky

  • Moon, Hong-Kyu;Kim, Myung-Jin;Yim, Hong-Suh;Choi, Young-Jun;Bae, Young-Ho;Roh, Dong-Goo;Ishiguro, Masateru;Mainzer, Amy;Bauer, James;Byun, Yong-Ik;Larson, Steve;Alcock, Charles
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.56.3-57
    • /
    • 2015
  • As of early 2015, more than 12,000 Near-Earth Objects (NEOs) have been catalogued by the Minor Planet Center, however their observational properties such as broadband colors and rotational periods are known only for a small fraction of the population. Thanks to time series observations with the KMTNet, orbits, optical sizes (and albedo), spin states and three dimensional shapes of asteroids and comets including NEOs will be systematically investigated and archived for the first time. Based on SDSS and BVRI colors, their approximate surface mineralogy will also be characterized. This so-called DEEP-South (Deep Ecliptic Patrol of the Southern Sky) project will provide a prompt solution to the demand from the scientific community to bridge the gaps in global sky coverage with a coordinated use of the network of ground-based telescopes in the southern hemisphere. We will soon finish implementing dedicated software subsystem consisted of automated observation scheduler and data pipeline for the sake of increased discovery rate, rapid follow-up, timely phase coverage, and efficient data analysis. We will give a brief introduction to test runs conducted at CTIO with the first KMTNet telescope in February and March 2015 and experimental data processing. Preliminary scientific results will also be presented.

  • PDF

대전광역시 도시화 패턴 분석을 위한 원격탐사 자료 처리 및 다중시기 토지이용 현황도 제작

  • Kim, Youn-Soo;Lee, Kwang-Jae;Jeon, Gap-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The importance of satellite data for numerous applications is stressed by the fact that many countries have given the development of space technologies very high priority. Among these, Korea has established a medium-term space development strategy to promote space development both on a scientific as well as commercial level. As part of this strategy, the first operational earth-observation, multi-purpose satellite(KOMPSAT-1) was launched successfully in December, 1999. The Electro-Optical Camera (EOC) on board of KOMPSAT-1 supplies panchromatic images with a spatial resolution of 6.6m Until April, 2004, it collected over 150.000 images of the Korean Peninsula and the rest of the world. This paper examines the use of remote sensing data to analyze urban growth in the city of Daejeon from 1960 to 2003. By using visual interpretation, land use maps are created.

  • PDF

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest (농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로)

  • Yoojin Kang;Yejin Kim ;Jungho Im;Joongbin Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

A 32-Gb/s Inductorless Output Buffer Circuit with Adjustable Pre-emphasis in 65-nm CMOS

  • Tanaka, Tomoki;Kishine, Keiji;Tsuchiya, Akira;Inaba, Hiromi;Omoto, Daichi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.3
    • /
    • pp.207-214
    • /
    • 2016
  • Optical communication systems are rapidly spread following increases in data traffic. In this work, a 32-Gb/s inductorless output buffer circuit with adjustable pre-emphasis is proposed. The proposed circuit consists of an output buffer circuit and an emphasis circuit. The emphasis circuit emphasizes the high frequency components and adds the characteristics of the output buffer circuit. We proposed a design method using a small-signal equivalent-circuit model and designed the compensation characteristics with a 65-nm CMOS process in detail using HSPICE simulation. We also realized adjustable emphasis characteristics by controlling the voltage. To confirm the advantages of the proposed circuit and the design method, we fabricated an output buffer IC with adjustable pre-emphasis. We measured the jitter and eye height with a 32-Gb/s input using the IC. Measurement results of double-emphasis showed that the jitter was 14% lower, and the eye height was 59% larger than single-emphasis, indicating that our proposed configuration can be applied to the design of an output buffer circuit for higher operation speed.

Table Structure Recognition in Images for Newspaper Reader Application for the Blind (시각 장애인용 신문 구독 프로그램을 위한 이미지에서 표 구조 인식)

  • Kim, Jee Woong;Yi, Kang;Kim, Kyung-Mi
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.11
    • /
    • pp.1837-1851
    • /
    • 2016
  • Newspaper reader mobile applications using text-to-speech (TTS) function enable blind people to read newspaper contents. But, tables cannot be easily read by the reader program because most of the tables are stored as images in the contents. Even though we try to use OCR (Optical character reader) programs to recognize letters from the table images, it cannot be simply applied to the table reading function because the table structure is unknown to the readers. Therefore, identification of exact location of each table cell that contains the text of the table is required beforehand. In this paper, we propose an efficient image processing algorithm to recognize all the cells in tables by identifying columns and rows in table images. From the cell location data provided by the table column and row identification algorithm, we can generate table structure information and table reading scenarios. Our experimental results with table images found commonly in newspapers show that our cell identification approach has 100% accuracy for simple black and white table images and about 99.7% accuracy for colored and complicated tables.

Terrain Aided Inertial Navigation for Precise Planetary Landing (정밀 행성 착륙을 위한 지형 보조 관성 항법 연구)

  • Jeong, Bo-Young;Choi, Yoon-Hyuk;Jo, Su-Jang;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.673-683
    • /
    • 2010
  • This study investigates Terrain Aided Inertial Navigation(TAIN) which consists of Inertial Navigation System (INS) with the optical sensor for precise planetary landing. Image processing is conducted to extract the feature points between measured terrain data and on-board implemented terrain information. The navigation algorithm with Iterated Extended Kalman Filter(IEKF) can compensate for the navigation error, and provide precise navigation information compared to single INS. Simulation results are used to demonstrate the feasibility of integration to accomplish precise planetary landing. The proposed navigation approach can be implemented to the whole system coupled with guidance and control laws.

Practical Encryption and Decryption System using Iterative Phase Wrapping Method (반복적인 위상 랩핑 방법을 이용한 실질적인 암호화 및 복호화 시스템)

  • Seo, Dong-Hoan;Lee, Sung-Geun;Kim, Yoon-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.955-963
    • /
    • 2008
  • In this paper, we propose an improved practical encryption and fault-tolerance decryption method using a non-negative value key and random function obtained with a white noise by using iterative phase wrapping method. A phase wrapping operating key, which is generated by the product of arbitrary random phase images and an original phase image. is zero-padded and Fourier transformed. Fourier operating key is then obtained by taking the real-valued data from this Fourier transformed image. Also the random phase wrapping operating key is made from these arbitrary random phase images and the same iterative phase wrapping method. We obtain a Fourier random operating key through the same method in the encryption process. For practical transmission of encryption and decryption keys via Internet, these keys should be intensity maps with non-negative values. The encryption key and the decryption key to meet this requirement are generated by the addition of the absolute of its minimum value to each of Fourier keys, respectively. The decryption based on 2-f setup with spatial filter is simply performed by the inverse Fourier transform of the multiplication between the encryption key and the decryption key and also can be used as a current spatial light modulator technology by phase encoding of the non-negative values. Computer simulations show the validity of the encryption method and the robust decryption system in the proposed technique.

A study on the moving picture transmission method by railway fiber optics cable (철도현장의 영상전송을 위한 광전송로 인터페이스 방안에 관한 연구)

  • Cho, B.K.;Chang, S.G.;Choi, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.244-246
    • /
    • 2004
  • Compared with other transport means, safety and timeliness are the merits of railways. Unexpectedly when accident happens, much time and human strength are required to cope with the accident. And for swift recovery, systematic rehabilitation is needed. Recently using MTS(Moving picture Transmission System), we can perform accident rehabilitation and recording work efficiently. MTS is the device that transmits continuous picture information from accident field to control center. We are developing the appropriate system to railway situation to make use of the existing information communication technology, processing technology of video-tex, super high speed transmission technology through fiber-optic, copper cable and network description of information Technology, etc. If these communication-based can technologies are applied to railway system, railway managers can control the accident by inspecting the picture of accident field and can contribute to the safe train operation and the improvement of railway management. In this paper, we investigate the connecting methods when optical fiber is used for moving picture data transmission of train accidents, and its problems. And, we validate MTS's performance through about 28km section of field test.

  • PDF

Evaluation System for Color Filter Array (CFA) in Digital Camera (디지털 카메라에서 컬러 필터 어레이를 위한 평가 시스템)

  • Bae, Tae Wuk
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1741-1749
    • /
    • 2017
  • In commercial digital-cameras, color-filter filters light according to wavelength range of color filter array (CFA) and the filtered intensities contain color information of light. Then, output data of CFA is transformed to final rendered image through demosaicing process. In image processing of digital-camera, the quality of the final rendered image is affected by optical cross talk of CFA, kind of CFA pattern etc. Basically, pattern of CFA plays important role in image quality of final image rendered by digital-camera. Therefore, an evaluation system capable of quantitatively evaluating CFA is needed. This paper proposes a novel evaluation system using existing and proposed image metrics for evaluating CFAs of digital-camera. Proposed CFA evaluation system consist of color difference in CIELAB and S-CIELAB, Structure SImilarity (SSIM), MTF50, moire starting point (MSP), and subjective preference (SP). MSP and SP are newly designed for the proposed evaluation system. Proposed evaluation system is expressed in polar coordinates to analyze the characteristics of CFA objectively and intuitively. Through simulations, we confirmed that proposed CFA evaluation system can objectively assess performance of developed CFAs.