• Title/Summary/Keyword: Optical cryptosystem

Search Result 22, Processing Time 0.021 seconds

Optical Implementation of Asymmetric Cryptosystem Combined with D-H Secret Key Sharing and Triple DES

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.592-603
    • /
    • 2015
  • In this paper, an optical implementation of a novel asymmetrical cryptosystem combined with D-H secret key sharing and triple DES is proposed. The proposed optical cryptosystem is realized by performing free-space interconnected optical logic operations such as AND, OR and XOR which are implemented in Mach-Zehnder type interferometer architecture. The advantage of the proposed optical architecture provides dual outputs simultaneously, and the encryption optical setup can be used as decryption optical setup only by changing the inputs of SLMs. The proposed cryptosystem can provide higher security strength than the conventional electronic algorithm, because the proposed method uses 2-D array data, which can increase the key length surprisingly and uses 3DES algorithm, which protects against “meet in the middle” attacks. Another advantage of the proposed asymmetrical cryptosystem is that it is free to change the user’s two private random numbers in generating the public keys at any time. Numerical simulation and performance analysis verify that the proposed asymmetric cryptosystem is effective and robust against attacks for the asymmetrical cipher system.

Optical Asymmetric Cryptography Modifying the RSA Public-key Protocol

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.103-114
    • /
    • 2020
  • A new optical asymmetric cryptosystem is proposed by modifying the asymmetric RSA public-key protocol required in a cryptosystem. The proposed asymmetric public-key algorithm can be optically implemented by combining a two-step quadrature phase-shifting digital holographic encryption method with the modified RSA public-key algorithm; then two pairs of public-private keys are used to encrypt and decrypt the plaintext. Public keys and ciphertexts are digital holograms that are Fourier-transform holograms, and are recorded on CCDs with 256-gray-level quantized intensities in the optical architecture. The plaintext can only be decrypted by the private keys, which are acquired by the corresponding asymmetric public-key-generation algorithm. Schematically, the proposed optical architecture has the advantage of producing a complicated, asymmetric public-key cryptosystem that can enhance security strength compared to the conventional electronic RSA public-key cryptosystem. Numerical simulations are carried out to demonstrate the validity and effectiveness of the proposed method, by evaluating decryption performance and analysis. The proposed method shows feasibility for application to an asymmetric public-key cryptosystem.

Asymmetric Public Key Cryptography by Using Logic-based Optical Processing

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • In this paper, a new asymmetric public key cryptography based on the modified RSA algorithm is proposed by using logic-based optical processing. The proposed asymmetric public key algorithm is realized into an optical schematic, where AND, OR and XOR logic operations are implemented by using free space digital optics architecture. Schematically, the proposed optical configuration has an advantage of generating the public keys simultaneously. Another advantage is that the suggested optical setup can also be used for message encryption and decryption by simply replacing data inputs of SLMs in the optical configuration. The last merit is that the optical configuration has a 2-D array data format which can increase the key length easily. This can provide longer 2-D key length resulting in a higher security cryptosystem than the conventional 1-D key length cryptosystem. Results of numerical simulation and differential cryptanalysis are presented to verify that the proposed method shows the effectiveness in the optical asymmetric cryptographic system.

Optical Implementation of Triple DES Algorithm Based on Dual XOR Logic Operations

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.362-370
    • /
    • 2013
  • In this paper, we propose a novel optical implementation of a 3DES algorithm based on dual XOR logic operations for a cryptographic system. In the schematic architecture, the optical 3DES system consists of dual XOR logic operations, where XOR logic operation is implemented by using a free-space interconnected optical logic gate method. The main point in the proposed 3DES method is to make a higher secure cryptosystem, which is acquired by encrypting an individual private key separately, and this encrypted private key is used to decrypt the plain text from the cipher text. Schematically, the proposed optical configuration of this cryptosystem can be used for the decryption process as well. The major advantage of this optical method is that vast 2-D data can be processed in parallel very quickly regardless of data size. The proposed scheme can be applied to watermark authentication and can also be applied to the OTP encryption if every different private key is created and used for encryption only once. When a security key has data of $512{\times}256$ pixels in size, our proposed method performs 2,048 DES blocks or 1,024 3DES blocks cipher in this paper. Besides, because the key length is equal to $512{\times}256$ bits, $2^{512{\times}256}$ attempts are required to find the correct key. Numerical simulations show the results to be carried out encryption and decryption successfully with the proposed 3DES algorithm.

Secret-key-sharing Cryptosystem Using Optical Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.119-127
    • /
    • 2019
  • A new secret-key-sharing cryptosystem using optical phase-shifting digital holography is proposed. The proposed secret-key-sharing algorithm is based on the Diffie-Hellman key-exchange protocol, which is modified to an optical cipher system implemented by a two-step quadrature phase-shifting digital holographic encryption method using orthogonal polarization. Two unknown users' private keys are encrypted by two-step phase-shifting digital holography and are changed into three digital-hologram ciphers, which are stored by computer and are opened to a public communication network for secret-key-sharing. Two-step phase-shifting digital holograms are acquired by applying a phase step of 0 or ${\pi}/2$ in the reference beam's path. The encrypted digital hologram in the optical setup is a Fourier-transform hologram, and is recorded on CCDs with 256 quantized gray-level intensities. The digital hologram shows an analog-type noise-like randomized cipher with a two-dimensional array, which has a stronger security level than conventional electronic cryptography, due to the complexity of optical encryption, and protects against the possibility of a replay attack. Decryption with three encrypted digital holograms generates the same shared secret key for each user. Schematically, the proposed optical configuration has the advantage of producing a kind of double-key encryption, which can enhance security strength compared to the conventional Diffie-Hellman key-exchange protocol. Another advantage of the proposed secret-key-sharing cryptosystem is that it is free to change each user's private key in generating the public keys at any time. The proposed method is very effective cryptography when applied to a secret-key-exchange cryptosystem with high security strength.

Experimental Analysis of Optical Fault Injection Attack for CRT-RSA Cryptosystem (CRT-RSA 암호시스템에 대한 광학적 오류 주입 공격의 실험적 연구)

  • Park, Jea-Hoon;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2009
  • The CRT-RSA cryptosystem is very vulnerable to fault insertion attacks in which an attacker can extract the secret prime factors p, q of modulus N by inserting an error during the computational operation on the cryptographic chip. In this paper, after implementing the CRT-RSA cryptosystem, we try to extract the secret key embedded in commercial microcontroller using optical injection tools such as laser beam or camera flash. As a result, we make sure that the commercial microcontroller is very vulnerable to fault insertion attacks using laser beam and camera flash, and can apply the prime factorization attack on CRT-RSA Cryptosystem.

Optical Secret Key Sharing Method Based on Diffie-Hellman Key Exchange Algorithm

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.477-484
    • /
    • 2014
  • In this paper, we propose a new optical secret key sharing method based on the Diffie-Hellman key exchange protocol required in cipher system. The proposed method is optically implemented by using a free-space interconnected optical logic gate technique in order to process XOR logic operations in parallel. Also, we present a compact type of optical module which can perform the modified Diffie-Hellman key exchange for a cryptographic system. Schematically, the proposed optical configuration has an advantage of producing an open public key and a shared secret key simultaneously. Another advantage is that our proposed key exchange system uses a similarity to double key encryption techniques to enhance security strength. This can provide a higher security cryptosystem than the conventional Diffie-Hellman key exchange protocol due to the complexity of the shared secret key. Results of numerical simulation are presented to verify the proposed method and show the effectiveness in the modified Diffie-Hellman key exchange system.

QPSK Modulation Based Optical Image Cryptosystem Using Phase-shifting Digital Holography

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.97-103
    • /
    • 2010
  • We propose a new technique for the optical encryption of gray-level optical images digitized into 8-bits binary data by ASCII encoding followed by QPSK modulation. We made an encrypted digital hologram with a security key by using 2-step phase-shifting digital holography, and the encrypted digital hologram is recorded on a CCD camera with 256 gray-level quantized intensities. With these encrypted digital holograms, the phase values are reconstructed by the same security key and are decrypted into the original gray-level optical image by demodulation and decoding. Simulation results show that the proposed method can be used for cryptosystems and security systems.

Three-key Triple Data Encryption Algorithm of a Cryptosystem Based on Phase-shifting Interferometry

  • Seok Hee Jeon;Sang Keun Gil
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.673-682
    • /
    • 2023
  • In this paper, a three-key triple data encryption algorithm (TDEA) of a digital cryptosystem based on phase-shifting interferometry is proposed. The encryption for plaintext and the decryption for the ciphertext of a complex digital hologram are performed by three independent keys called a wavelength key k1(λ), a reference distance key k2(dr) and a holographic encryption key k3(x, y), which are represented in the reference beam path of phase-shifting interferometry. The results of numerical simulations show that the minimum wavelength spacing between the neighboring independent wavelength keys is about δλ = 0.007 nm, and the minimum distance between the neighboring reference distance keys is about δdr = 50 nm. For the proposed three-key TDEA, choosing the deviation of the key k1(λ) as δλ = 0.4 nm and the deviation of the key k2(dr) as δdr = 500 nm allows the number of independent keys k1(λ) and k2(dr) to be calculated as N(k1) = 80 for a range of 1,530-1,562 nm and N(dr) = 20,000 for a range of 35-45 mm, respectively. The proposed method provides the feasibility of independent keys with many degrees of freedom, and then these flexible independent keys can provide the cryptosystem with very high security.

Application to 2-D Page-oriented Data Optical Cryptography Based on CFB Mode (CFB 모드에 기반한 2 차원 페이지 데이터의 광학적 암호화 응용)

  • Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.424-430
    • /
    • 2015
  • This paper proposes an optical cryptography application to 2-D page-oriented data based on CFB(Cipher Feedback) mode algorithm. The proposed method uses a free-space optical interconnected dual-encoding technique which performs XOR logic operations in order to implement 2-D page-oriented data encryption. The proposed method provides more enhanced cryptosystem with greater security strength than the conventional CFB block mode with 1-D encryption key due to the huge encryption key with 2-D arrayed page type. To verify the proposed method, encryption and decryption of 2-D page data and error analysis are carried out by computer simulations. The results show that the proposed CFB optical encryption system makes it possible to implement stronger cryptosystem with massive data processing and long encryption key compared to 1-D block method.