• 제목/요약/키워드: Optical band gap energy

검색결과 344건 처리시간 0.034초

전자빔 증착법으로 제작한 Se박막의 광학적 특성 (Optical characteristics of Se thin film fabricated by EBE method)

  • 정해덕;이기식
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권5호
    • /
    • pp.445-449
    • /
    • 1996
  • Structural and optical characteristics in Se thin film fabricated by EBE method had been studied. Se thin film was deposited with noncrystalline until substrate temperature of >$100^{\circ}C$ Color of its surface had red genealogy, and its optical energy band gap was about 2.45 eV. But Se film was grown with monoclinic at substrate temperature of over >$150^{\circ}C$ Also, color of its surface had gray genealogy, and its optical energy band gap was about 2.31 eV. Finally, after heat-treatment at >$150^{\circ}C$ for 15 min with substrate temperature of >$100^{\circ}C$ noncrystalline Se was proved to be hexagonal, and color of its surface had dark gray genealogy, and its optical energy band gap was about 2.06 eV. From the results, it was known that Se thin film for photoelectric device with the lowest optical energy band gap was accepted from hexagonal structure.

  • PDF

$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}:Co^{2+}$ 단결정의 광학적 특성과 열역학 함수 추정 (Optical properties and thermodynamic function properties of undoped and Co-doped $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ Single Crystals)

  • 현승철;김형곤;김덕태;박광호;박현;오석균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.88-93
    • /
    • 2002
  • $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ and $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}:Co^{2+}$ + single crystals were grown by CTR method. The grown single crystals have defect chalcopyrite structure with lattice constant a= 5.5966A. c= 10.8042${{\AA}}$ for the pure. a= 5.6543${{\AA}}$. c= 10.8205${{\AA}}$ for the Co-doped single crystal. respectively. The optical energy band gap was given as indirect band gap. The optical energy band gap was decreased according to add of Co-impurity. Temperature dependence of optical energy band gap was fitted well to the Varshni equation. From this relation. we can deduced the entropy. enthalpy and heat capacity. Also. we can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_d$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

  • PDF

$\alpha$-sulfur 단결정의 광학적 특성에 관한 연구 (Oprical Properties of $\alpha$-Sulfur Single Crystal)

  • 송호준;김화택;이정순
    • 한국전기전자재료학회논문지
    • /
    • 제11권6호
    • /
    • pp.442-446
    • /
    • 1998
  • $\alpha$--sulfur single crystal which has orthorohmbic structure was grown using Bridgman method. The indirect optical energy band gap of this crystal are 2.65 and 2.82 eV at 10 and 300K, respectively. The wavelengths of photoluminecence(PL) peaks are 543 and 596 nm at 10k, By thermally stimulated current (TSC) method, two electron traps($D_1,D_2$) located at 0/23 and 0.43eV below the conduction band and a hole trap(A) located at 0.31 eV above the valence band are observed. PL mechanism of $\alpha$-sulfur single crystal is analyzed using the values of optical energy band gap at 10k two electron traps and a hole trap.

  • PDF

CdS 및 CdS:Co2+ 단결정의 성장과 광학적 특성 (Growth and optical properties of undoped and Co-doped CdS single crystals)

  • 오금곤;김남오;김형곤;현승철;박현;오석균
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.137-141
    • /
    • 2002
  • CdS and $CdS:Co^{2+}$ single crystals were grown by CTR method using iodine as transport material. The grown single crystals have defect chalcopyrite structure with direct band gap. The optical energy band gap was decreased according to add of Co-impurity. We can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_d$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

Optical energy band gap of the conductive $AgGaSe_2$ layers

  • You, Sang-Ha;Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.46-46
    • /
    • 2009
  • The photoconductive $AgGaSe_2$(AGS) layers were grown by the hot wall epitaxy method. The AGS layer was confirmed to be the epitaxially grown layer along the <112> direction onto the GaAs(100) substrate. The band-gap variation as a function of temperature on AGS was well fitted by $E_8(T)=1.9501-8.37{\times}10^{-4}T^2/(T+224)$. The band-gap energy of AGS obtained at 293 K was determined to be 1.8111 eV.

  • PDF

$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ 단결정의 광학적 특성과 열역학 함수 추정 (Optical Properties and Thermodynamic Function Properties of Undoped and Co-Doped $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ Single Crystals)

  • 현승철;박현;박광호;오석균;김형곤;김남오
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권7호
    • /
    • pp.275-281
    • /
    • 2003
  • $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ and $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ single crystals were grown by CTR method. The grown single crystals have defect chalcopyrite structure with lattice constant a=5.5966$\AA$, c=10.8042$\AA$ for the pure, a=5.6543$\AA$, c=10.8205$\AA$ for the Co-doped single crystal, respectively. The optical energy band gap was given as indirect band gap. The optical energy band gap was decreased according to add of Co-impurity Temperature dependence of optical energy band gap was fitted well to the Varshni equation. From this relation, we can deduced the entropy, enthalpy and heat capacity. Also, we can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_{d}$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

Optical Properties of ZnHgGa4Se8 and ZnHgGa4Se8:Co2+ Single Crystals

  • Lee Choong-Il
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.657-661
    • /
    • 2005
  • [ $ZnHgGa_4Se_8\;and\;ZnHgGa_4Se_8::Co^{2+}$ ] single crystals were grown by the Bridgman-Stockbarger method. The single crystals crystallized into a defect chalcopyrite structure. The optical energy band gap of the single crystals was investigated in the temperature range 11-300K. The optical energy band gap of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was smaller than that of the $ZnHgGa_4Se_8$ single crystal. The temperature dependence of the optical energy band gap of the single crystals was well fitted by the Varshni equqtion. The impurity optical absorption spectrum of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was measured in the wavelength region 300-2300 m at 80 K. Impurity absorption peaks in the spectrum were analyzed within the framework of the crystal field theory and were attributed to the electron transitions between the energy levels of $Co^{2+}$ sited in the Td symmetry point.

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF

$MgGa_2Se_4$ 단결정의 성장과 광학적 특성 (The Growth and Optical Properties of $MgGa_2Se_4$ Single Crystal)

  • 김형곤;이광석;이기형
    • 대한전자공학회논문지
    • /
    • 제25권4호
    • /
    • pp.402-406
    • /
    • 1988
  • The MgGa2Se4 single crystal for study of optical properties is for the first time grown by Bridgmna method. The crystal structure of grown MgGa2Se4 single crystal has the Rhomobohedral structure (R3m) and its lattice constant are a=3.950\ulcorner c=38.893\ulcornerin Hexagonal structure. The energy band structure of grown MgGa2Se4 single crystal structure has direct band gap and the optical energy gap measured from optical absorption in this crystal is 2.20eV at 290K. The temperature dependence of energy gap was given Eg(T)=Eg(O)-aT\ulcorner)B+T), from varshni equation, where Eg(O)=2.34eV, a=8.79x10**-4eV/and b=250K.

  • PDF

Optical Properties of SnS2 Single Crystals

  • Lee Choong-Il
    • 한국재료학회지
    • /
    • 제15권3호
    • /
    • pp.195-201
    • /
    • 2005
  • The $SnS_2,\;SnS_2:Cd$, and $SnS_2:Sb$ single crystals were grown by the chemical transport reaction method. The indirect optical energy band gap was found to be 2.348, 2.345, and 2.343 eV for the $SnS_2,\;SnS_2:Cd$, and $SnS_2:Sb$ single crystals, at 6 K respectively. The direct optical energy band gap was found to be 2.511, 2.505, and 2.503 eV f3r the $SnS_2,\;SnS_2:Cd$, and $SnS_2:Sb$ single crystals, at 6 K respectively The temperature dependence of the optical energy band gap was well fitted by the Varshni equation. Two photoluminescence emission peaks with the peak energy of 2.214 and 1.792 eV for $SnS_2$, 2.214 and 1.837 eV for $SnS_2:Cd$, and 2.214 and 1.818 eV the $SnS_2:Sb$ were observed. The emission peaks were described as originating from the donor-acceptor pair recombinations.