• Title/Summary/Keyword: Optical approach

Search Result 721, Processing Time 0.028 seconds

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.

Number Plate Detection with a Multi-Convolutional Neural Network Approach with Optical Character Recognition for Mobile Devices

  • Gerber, Christian;Chung, Mokdong
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • In this paper, we propose a method to achieve improved number plate detection for mobile devices by applying a multiple convolutional neural network (CNN) approach. First, we processed supervised CNN-verified car detection and then we applied the detected car regions to the next supervised CNN-verifier for number plate detection. In the final step, the detected number plate regions were verified through optical character recognition by another CNN-verifier. Since mobile devices are limited in computation power, we are proposing a fast method to recognize number plates. We expect for it to be used in the field of intelligent transportation systems.

Properties and low loss packing of LiNbO3 optical modulator for a broadband optical communications (광 대역 광 통신을 위한 LiNbO3 광 변조기 소자의 저손실 패키징 및 특성에 관한 연구)

  • Yun, Hyeong Do;Lee, Han Yeong;Lee, Gyeong Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.35-35
    • /
    • 2001
  • 광대역 초고속 광변조기소자 패키지와 연계되는 주요 문제점인 die feature, pigtailing, suppression of RF package resonance, RF launcher approach, termination approach의 5가지 특성을 차례로 분석한 후 우수한 특성이 나올 수 있도록 소자를 패키징하였다. Microcoax에 의해 패키징된 변조기의 전기적 특성인 S21은 10㎓ 이상까지 -3㏈ 이상의 파워를 유지하였고, $S_{11}$은 18㎓까지 -l5㏈를 유지하였다. 10㎓까지 광파워는 최대값으로부터 3㏈ 이상 떨어지지 않았고 50km 전송실험 후 소광비는 약 10.6㏈, 지터 값은 3.2ps로 양호한 값을 나타내어 패키징을 원만히 해결해야만 변조기의 변조 능력은 10㎓ 이상이 됨을 알 수 있다.

Analysis of Thermal Relaxation Time of Tissues Subject to Pulsed Laser Irradiation (초단파 레이저 조사시 티슈 열완화 시간 분석)

  • Kim, Kyung-Han;Lee, Jae-Hoon;Suh, Jeong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • Two methodologies for predicting thermal relaxation time of tissue subjected to pulsed laser irradiation is introduced by the calculation the optical penetration depth and by the investigation of the temperature diffusion behavior. First approach is that both x-axial and y-axial thermal relaxation times are predicted and they are superposed to achieve the thermal relaxation time (${\tau}_1$) for two-dimensional square tissue model. Another approach to achieve thermal relaxation time (${\tau}_2$) is measuring the time required for local temperature drop until $e^{-1}$ of the maximum laser induced heating.

  • PDF

Sparse Kernel Independent Component Analysis for Blind Source Separation

  • Khan, Asif;Kim, In-Taek
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.121-125
    • /
    • 2008
  • We address the problem of Blind Source Separation(BSS) of superimposed signals in situations where one signal has constant or slowly varying intensities at some consecutive locations and at the corresponding locations the other signal has highly varying intensities. Independent Component Analysis(ICA) is a major technique for Blind Source Separation and the existing ICA algorithms fail to estimate the original intensities in the stated situation. We combine the advantages of existing sparse methods and Kernel ICA in our technique, by proposing wavelet packet based sparse decomposition of signals prior to the application of Kernel ICA. Simulations and experimental results illustrate the effectiveness and accuracy of the proposed approach. The approach is general in the way that it can be tailored and applied to a wide range of BSS problems concerning one-dimensional signals and images(two-dimensional signals).

Tolerance Analysis and Optimization for a Lens System of a Mobile Phone Camera (휴대폰용 카메라 렌즈 시스템의 공차최적설계)

  • Jung, Sang-Jin;Choi, Dong-Hoon;Choi, Byung-Lyul;Kim, Ju-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.397-406
    • /
    • 2011
  • Since tolerance allocation in a mobile phone camera manufacturing process greatly affects production cost and reliability of optical performance, a systematic design methodology for allocating optimal tolerances is required. In this study, we proposed the tolerance optimization procedure for determining tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices. We employed Latin hypercube sampling for evaluating the reliabilities of optical performance and a function-based sequential approximate optimization technique that can reduce computational burden and well handle numerical noise in the tolerance optimization process. Using the suggested tolerance optimization approach, the optimal production cost was decreased by 30.3 % compared to the initial cost while satisfying the two constraints on the reliabilities of optical performance.

In-situ optical thickness & easy packing density measurements as novel approach to development of OLED

  • Kim, Mu-Gyeom;Kim, Sang-Yeol;Lee, Sung-Hun;Song, Jung-Bae;Park, Sang-Hun;Son, Jhun-Mo;Kang, Sung-Kee;Tamura, Shinichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1112-1115
    • /
    • 2007
  • Optical thickness method using double interferometer showed dynamic variations of both mechanical and optical thicknesses. Packing density measured a thickness ratio of before and after pressed single film. Lower swelled thickness of emitting layer in a device and densely packed film had shown better lifetime.

  • PDF

Acoustooptical Approach for Moving Scene Holography

  • Petrov, Vladimir
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.451-462
    • /
    • 2003
  • At the paper the method of 3D holographic moving image reconstruction is discused. The main idea of this method is based on the substitution of optically created static hologram by equal diffraction array created by acoustical (AO) field which formed by bulk sound waves. Such sound field can be considered as dynamic optical hologram, which is electrically controlled. At the certain moment of time when the whole hologram already formed, the reference optical beam illuminates it, and due to acoustooptical interaction the original optical image is reconstructed. As the acoustically created dynamic optical hologram is electronically controlled, it can be used for moving 3-dimentional scene reconstruction in real time. The architecture of holographic display for moving scene reconstruction is presented at this paper. The calculated variant of such display laboratory model is. given and discussed. The mathematical simulation of step by step images recording and reconstruction is given. The pictures of calculated reconstructed images are presented. The prospects, application areas, shortcomings and main problems are discussed.

  • PDF

An optical phase stabilization technique for interferometric systems (간섭계를 응용한 광학 장치에서의 위상 안정화 방법)

  • 김종훈;김동성
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.362-365
    • /
    • 1997
  • This paper presents a new optical phase stabilization technique for interferometric such as Mach-Zehnder interferometers or Homodyne detectors. The proposed technique can lock such interferometric systems in their maximum/minimum optical outputs without using a dither signal. The phase control scheme is a modified steepest decent algorithm, and is analyzed in terms of a delta modulation approach. It is also applicable to low-repetition rate pulsed interferometric systems in which conventionally used dithering method is difficult to be applied.

  • PDF

Accurate Simulation of a Shallow-etched Grating Antenna on Silicon-on-insulator for Optical Phased Array Using Finite-difference Time-domain Methods

  • Seo, Dong-Ju;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.522-530
    • /
    • 2019
  • We present simulation methods to accurately determine the transmission efficiency and far-field patterns (FFPs) of a shallow-etched waveguide grating antenna (WGA) formed on a silicon-on-insulator wafer based on the finite-difference time-domain (FDTD) approach. The directionality and the FFP of a WGA with >1-mm in length can be obtained reliably by simulating a truncated WGA structure using a three-dimensional FDTD method and a full-scale WGA using a two-dimensional FDTD with the effective index method. The developed FDTD methods are applied to the simulation of an optical phased array (OPA) composed of a uniformly spaced WGA array, and the steering-angle dependent transmission efficiency and FFPs are obtained in OPA structures having up to 128-channel WGAs.