• Title/Summary/Keyword: Optical and structural properties

Search Result 931, Processing Time 0.024 seconds

Annealing Effect on the structural and optical properties of ZnO thin films prepared by Pulsed Laser Deposition (펄스레이저 증착법으로 성장된 ZnO 박막의 어닐링 온도변화에 따른 구조적, 광학적 특성에 관한 연구)

  • Kim, Jae-Hong;Lee, Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.54-57
    • /
    • 2004
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266 m. During deposition, the experiment of the deposition of ZnO thin films has been performed for substrate temperatures in the range of $400^{\circ}C$ and flow rate of 350 sccm, films have been annealed at various substrate temperatures after deposition. After post-annealing treatment in the oxygen ambient, the structural properties of ZnO thin films were characterized by diffraction (XRD), SEM and the optical of the ZnO were characterized by photoluminescence (PL).

  • PDF

Structural and optical properties of sputtered vanadium pentoxide thin films (스퍼터링으로 퇴적시킨 바나듐 산화막의 구조적, 광학적 특성)

  • Choi, Bok-Gil;Shin, Kyu-Ho;Jung, Sang-Jin;Choi, Chang-Kyu;Kim, Sung-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.746-748
    • /
    • 1998
  • Thin films of vanadium pentoxide ($V_{2}O_{5}$) have been deposited by r.f. magnetron sputtering from $V_{2}O_{5}$ target in gas mixture of argon and oxygen. Crystal structure, surface morphology, surface composition and optical properties of films prepared under different substrates are characterized through XRD, SEM, AES, XPS and optical absorption measurements. The films prepared below $100^{\circ}C$ are amorphous, and those prepared above $200^{\circ}C$ are polycrystalline. Thermally Induced oxidation of films into higher oxide has been observed with increasing substrate temperature. Vanadium oxide films show two optical absorption bands indicating the presence of direct and indirect transitions.

  • PDF

Electrical and Optical Properties of Sb-Doped SnO2 Transparent Conductive Films Fabricated by Using Electrospinning (전기방사법을 이용하여 제조된 Sb-Doped SnO2 투명전도막의 전기적 및 광학적 특성)

  • An, Ha-Rim;Koo, Bon-Ryul;Ahn, Hyo-Jin;Lee, Tae-Kum
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.177-182
    • /
    • 2015
  • Sb-doped $SnO_2$(ATO) thin films were prepared using electrospinning. To investigate the optimum properties of the electrospun ATO thin films, the deposition numbers of the ATO nanofibers(NFs) were controlled to levels of 1, 2, 4, and 6. Together with the different levels of deposition number, the structural, chemical, morphological, electrical, and optical properties of the nanofibers were investigated. As the deposition number of the ATO NFs increased, the thickness of the ATO thin films increased and the film surfaces were gradually densified, which affected the electrical properties of the ATO thin films. 6 levels of the ATO thin film exhibited superior electrical properties due to the improved carrier concentration and Hall mobility resulting from the increased thickness and surface densification. Also, the thickness of the samples had an effect on the optical properties of the ATO thin films. The ATO thin films with 6 deposited levels displayed the lowest transmittance and highest haze. Therefore, the figure of merit(FOM) considering the electrical and optical properties showed the best value for ATO thin films with 4 deposited levels.

Optical and structural properties of polarization-discriminatory state inverters with combination structure deposited by glancing angle deposition (경사입사 증착방법을 이용한 선편광 방향변환기의 광학적, 물리적 특성)

  • Park, Yong-Jun;Sobahan, K.M.A.;HwangBo, Chang-Gwon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.409-410
    • /
    • 2009
  • In this paper, we report an experimental study of a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by glancing angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure.

  • PDF

Phase Transition Characteristics in $Ge_xSb_{100-x}$ Film for Optical Storage Media

  • Park Tae-jin;Kang Myung-jin;Choi Se-young
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.124-127
    • /
    • 2005
  • Rewritable optical memory devices such as an CD-RW and DVD+RW are data storage media, which take advantage of the different optical properties in the amorphous and crystalline states of phase change materials. The switching property, structural transformation, transformation kinetics and chemical bindings of $Ge_xSb_{100-x}$($6{\le}x{\le}$34) were studied to investigate the feasibility of applying $Ge_xSb_{100-x}$ alloys in optical memory. The $Ge_xSb_{100-x}$ thin film was deposited by RF magnetron co-sputtering system and phase change characteristics were investigated by X-ray diffraction (XRD), static tester, inductively coupled plasma atomic emission spectrometer (ICP-AES) and atomic force microscopy (AEM). Optimum fiim composition of $Ge_xSb_{100-x}$ was studied and its minimum time fur laser induced crystallization and optical contrast fur phase transition was performed. These results might be correlated with the binding energies between Ge and Sb, and indicate that $Ge_xSb_{100-x}$ have an potential far optical memory applications.

  • PDF

Changes in Structural, Electrical, and Optical Properties Depending on the Thickness of AZO Thin Films Deposited with FTS (FTS로 증착된 AZO 박막의 두께에 따른 구조적, 전기적, 광학적 특성 변화)

  • Haechan Kim;Hyungmin Kim;Seongmin Shin;Kyunghwan Kim;Jeongsoo Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.169-174
    • /
    • 2024
  • In this study, the structural, electrical, and optical properties of AZO films of various thicknesses are compared. The AZO films were deposited on a glass substrate by FTS (Facing-Target-Sputtering) This research was conducted to find the optimal thickness for Transparent Conductive Oxide (TCO). AZO has suitable properties for TCO such as low resistivity, and high transmittance. Thin films of all thicknesses showed a transmittance of over 80% in the visible light region and electrical properties improved as thickness increased. It was confirmed that the film of 300 nm thick had the best performance due to its low resistivity, and uniform surface. This research is expected to help find optimal conditions in various fields where TCO is used, such as solar cells, displays, and sensors in the future.