## T-P42

## Structural and optical properties of $LiT_xMn_{2-x}O_4$ (T = Cr and Ti) thin films grown by sol-gel method

## Jung Han Lee and Kwang Joo Kim

Department of Physics, Konkuk University

Using sol-gel method employing spin-coating process,  $LiT_xMn_{2-x}O_4$  (T = Cr and Ti) thin films were grown on Si(100) substrates. By Cr doping, cubic  $LiCr_xMn_{2-x}O_4$  films were produced without any secondary phase up to x = 1. A decrease of the lattice constant was observed in the  $LiCr_xMn_{2-x}O_4$  films up to x = 0.6. However, an increase of the lattice constant was observed for x > 0.6. In case of Ti doping, cubic  $LiTi_xMn_{2-x}O_4$  films were produced for  $x \le 0.6$ , however,  $TiO_2$  phase was found for higher x. The atomic valence of the dopant ions was investigated by using X-ray photoelectron spectroscopy. Optical properties of the films were investigated by using spectroscopic ellipsometry in the visible-ultraviolet range. Observed optical absorption structures are interpreted in terms of charge-transfer and crystal-field transitions involving octahedral  $Mn^{3+}$  ions. A reduction of CT transition strength is interpreted as due to the reduction of the  $Mn^{3+}$  density through the dopant substitution.