• Title/Summary/Keyword: Optical Transmittance

Search Result 1,483, Processing Time 0.03 seconds

Effect of the Concentration of Citrate on the Growth of Aqueous Chemical Bath Deposited ZnO and Application of the Film to Cu(In,Ga)Se2 Solar Cells (Citrate 농도에 따른 수용액 화학조 증착 ZnO 성장 및 ZnO 박막의 Cu(In,Ga)Se2 태양전지 응용)

  • Cho, Kyung Soo;Jang, Hyunjun;Oh, Jae-Young;Kim, Jae Woo;Lee, Jun Su;Choi, Yesol;Hong, Ki-Ha;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.204-210
    • /
    • 2020
  • ZnO thin films are of considerable interest because they can be customized by various coating technologies to have high electrical conductivity and high visible light transmittance. Therefore, ZnO thin films can be applied to various optoelectronic device applications such as transparent conducting thin films, solar cells and displays. In this study, ZnO rod and thin films are fabricated using aqueous chemical bath deposition (CBD), which is a low-cost method at low temperatures, and environmentally friendly. To investigate the structural, electrical and optical properties of ZnO for the presence of citrate ion, which can significantly affect crystal form of ZnO, various amounts of the citrate ion are added to the aqueous CBD ZnO reaction bath. As a result, ZnO crystals show a nanorod form without citrate, but a continuous thin film when citrate is above a certain concentration. In addition, as the citrate concentration increases, the electrical conductivity of the ZnO thin films increases, and is almost unchanged above a certain citrate concentration. Cu(In,Ga)Se2 (CIGS) solar cell substrates are used to evaluate whether aqueous CBD ZnO thin films can be applicable to real devices. The performance of aqueous CBD ZnO thin films shows performance similar to that of a sputter-deposited ZnO:Al thin film as top transparent electrodes of CIGS solar cells.

Fabrication of ATO thin film for IR-cut off by sol-gel method (솔-젤 법에 의한 적외선 차단 ATO 박막 제조)

  • Kim, Jin-Ho;Lee, Kwang-Hee;Lee, Mi-Jai;Hwang, Jonghee;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.230-234
    • /
    • 2013
  • IR cut-off thin films consisted of ATO nanoparticles were successfully fabricated by sol-gel method. The coating solution was synthesized with organic/inorganic hybrid binder and ATO colloidal solution and ATO thin films were coated on a slide glass with the withdrawal speed of 5~40 mm/s. As the withdrawal speed increased from 5 mm/s to 40 mm/s, the thickness of coating thin films also increased from $1.05{\mu}m$ to $4.25{\mu}m$ and the IR cut-off in wavelength of 780~2500 nm increased from 49.5 % to 66.7 %. In addition, the pencil hardness of ATO thin films dried at $80^{\circ}C$ was ca. 5H and the coating films were not removed after a cross cutter tape test because of the hybrid binder synthesized with tetraethylorthosilicate and methyltrimethoxysilane. The surface morphologies, optical properties and film thickness of prepared thin films with a different withdrawal speed were measured by field emission scanning electron microscope (FE-SEM), UV-Vis spectrophotometer, and Dektak.

Fabrication and characterization of boron free E-glass fiber compositions (붕소를 함유하지 않는 E-glass fiber의 제조 및 특성에 대한 연구)

  • Lee, Ji-Sun;Lim, Tae-Young;Lee, Yo-Sep;Lee, Mi-Jai;Hwang, Jonghee;Kim, Jin-Ho;Hyun, Soong-Keun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • E-glass fiber is the most widely used glass fiber for reinforced composite materials of aircrafts, automobiles and leisure equipments. But recently researches are being progressed to reduce boric oxide from 8 % to 0 (zero), as is called 'Boron free E-glass', because of increasing material cost, environmental problem, and improving chemical resistance and mechanical properties of E-glass fiber. In this study, we fabricated the bulk glass and fiber glass of 'Boron free E-glass (BF) compositions', and characterized thermal properties and optical properties. 'Boron free E-glass (BF)' was obtained by the melting of mixed batch materials at $1550^{\circ}C$ for 2 hrs with different $Al_2O_3$ compositions 5~10 %. We obtained transparent clear glass with high visible light transmittance value of 81~86 %, and low thermal expansion coefficient of $4.2{\sim}4.9{\times}10^{-6}/^{\circ}C$ and softening point of $907{\sim}928^{\circ}C$. For the chemical resistance test of 'BF' fiber samples, we identified that the higher alumina contents gives the better corrosion resistance of glass fiber.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

ANALYSIS OF OPTICAL TRANSMISSION CHARATERISTICS BY VISIBLE LIGHT INTO SHADE GHIDES (가시광선영역에서 shade guide에 따른 광투과도 특성 연구)

  • Choi, Keun-Bae;Park, Charn-Woon;Song, Chang-Yong;Ko, Sok-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.147-159
    • /
    • 2000
  • The purpose of this study was the evaluation of spectral transmission of the commercial three shade guides and the relationship of hue, value, and chroma according to the transmission rate. The spectral transmittance of three shade guides - Vita Lumin Shade Guide, Vintage and Unibond Shade Guide, and Vitapan 3D-Master Shade Guide - were measured. For direct transmission measurements, each shade tabs were placed at the entrance port of the 1mm diameter intergrating sphere. The intensity of the light source passing through the shade tabs to the right angle was continuously recorded for wavelength from 400 to 700 nm. A transmission spectrum and digital data were obtained for each measurement and they were evaluated using Microcal Origin program. The obtained results of this study were as follows : 1. In Vita Lumin Shade Guide, sum of the transmission rate of the shade tabs at the wavelength 400-700nm was decreased in agreement with the arrangement order at each A, B, C, D group, except D4 shade tab. However, there were no relationships between the transmission rate of the shade tabs and the value-oriented. 2. In Vintage and Unibond Shade Guide, sum of the total transmission rate of the shade tabs was decreased in agreement with the arrangement order at each A, B, C, B group. When all shade tabs arranged in value-oriented, transmission rate was accord with the order, except D4 shade tab. 3. When shade tabs of the Vitapan 3D-Master Shade Guide have the same value and hue, sum of their total transmission rate decreased in accordance with the chroma-oriented. When the shade tabs have the same value and chroma, there were no differences from the order of the transmission rate to the various hue type. However, in the 'R' tabs of reddish hue type, the transmission rate increased at the long wavelength range area. In conclusion, we need the quantitative analyzing instruments in transmission determination. Vitapan 3D-Master Shade Guide covers the tooth color space taking into account the parameters of the systematic value, chroma, hue oriented, and the transmission rate relatively accorded with that sequence.

  • PDF

Physical Properties of ZnO Thin Films Grown by Sol-Gel Process with Different Preheating Temperatures (예열 온도 변화에 따른 Sol-Gel 법에 의해 제작된 ZnO 박막의 물리적 특성 연구)

  • 김익주;한호철;이충선;송용진;태원필;서수정;김용성
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.136-142
    • /
    • 2004
  • A homogeneous and stable ZnO sol was prepared by dissolving the zinc acetate dihydrate(Zn(CH$_3$COO)$_2$$.$2H$_2$O) in solution of isopropanol((CH$_3$)$_2$$.$CHOH) and monoethanolamine(MEA:H$_2$NCH$_2$CH$_2$OH). ZnO thin films were prepared by sol-gel spin-coating method and investigated for c-axis preferred orientation and physical properties with preheating temperature. The c-axis growth had a difference as increaing preheating temperature. ZnO thin film preheated at 275$^{\circ}C$ and post-heated at 650$^{\circ}C$ was highly oriented along the (002) plane. After preheating at 200∼300$^{\circ}C$ and post-heating at 650$^{\circ}C$, the transmittance of ZnO thin films by UV-vis. measurement was over 85% in visible range and exhibited absorption edges at about 370 nm. The optical band gap energy was obtained about 3.22 eV, The photoluminescence emission characteristics of ZnO thin film preheated at 275$^{\circ}C$ and post-heated at 650$^{\circ}C$ was found to orange emission(620 nm, 2.0 eV) by PL measurement, which revealed the possibility for application of inorganic photoluminescence device.

Study on the Physical Property of Thermal Curtains for Greenhouse (시설하우스용 보온커튼재의 물리적 특성에 관한 연구)

  • 장유섭;오권영;김승희;전종길;강금춘;정두호
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.34-42
    • /
    • 1996
  • This study was conducted to investigate the physical and optical properties of polypropylene and polyester thermal curtains, in which tensile strength, heat reservance and light transmission of two different materials were measured. The results from this study are as follows. 1. The tensile weight of different materials were ranged from 3.4kg to 13.4kg, according to the thickness of materials, but that no difference in the tensile strength was appeared between the two materials. The Elongation of polypropylene materials and the tensile weight and strength of polyester materials were greater than any other materials. 2. The light transmittances of two materials were ranged from 50.3% to 81.7 %, light transmittances in polypropylene were higher by 20-30%,than those in polyester. 3. The heat reservances of two materials were ranged from 18.2% to 41.2%, in which polypropylene showed better performance than polyester. 4. From the results of the test, the polypropylene thermal material was better in elongation, heat reservances and light transmittances, but polyester thermal material was better in tensile strength and light isolation than the other material.

  • PDF

Fabrication of superhydrophobic $TiO_2$ thin films by wet process (습식 공정법에 의한 초발수 $TiO_2$ 박막 제조)

  • Kim, Jin-Ho;Jung, Hyun-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Choi, Duk-Gun;Cheong, Deock-Soo;Kim, Sae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.262-267
    • /
    • 2009
  • Superhydrophobic $TiO_2$ thin films were successfully fabricated on a glass substrate by wet process. Layer-by-layer (LBL) deposition and liquid phase deposition (LPD) methods were used to fabricate the thin films of micro-nano complex structure with a high roughness. To fabricate superhydrophobic $TiO_2$ thin films, the (PAH/PAA) thin films were assembled on a glass substrate by LBL method and then $TiO_2$ nanoparticles were deposited on the surface of (PAH/PAA) thin film by LPD method, Subsequently, hydrophobic treatment using fluoroalkyltrimethoxysilane (FAS) was carried out on the surface of prepared $TiO_2$ thin films. The $TiO_2$ thin film fabricated with 45 minutes immersion time on $(PAH/PAA)_{10}$ showed the RMS roughness of 65.6nm, water contact angel of $155^{\circ}$ and high transmittance of above 80% (>650nm in wavelength) after the hydrophobic treatment. The Surface morphologies, optical properties and contact angel of prepared thin films with different experimental conditions were measured by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), UV-Vis spectrophotometer and contact angle meter.

The protection effects from water vapor permeation of inorganic films prepared by electron-beam evaporation technique (전자-선 증착 기술에 의해 성막된 다양한 무기 박막들의 투습 방지 특성)

  • Ryu, Sung-Won;Rhee, Byung-Roh;Kim, Hwa-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Various diatomic inorganic films and their composite films are packed as passivation films covering Ca cells on glass substrates by using an electron-beam evaporation technique. When these Ca cells are exposed to an ambient atmosphere, the water vapor penetrating through the passivation layers is absorbed in the Ca cells, resulting in a gradual progress of transparency in the Ca cells, which can be represented by changes of the optical transmittance in the visible range. Compared with the saturation times for the Ca cells to become completely transparent in the atmosphere, the protection effects of water vapor are estimated for various passivation films. The composite films consisting silicon oxide($SiO_2$) and tin oxide($SnO_2$) or zinc oxide(ZnO) are found to show a superior protection effect of water vapor as compared with diatomic inorganic films. Also, the main factors affecting the permeation of water vapor through the oxide films are found to be the polarizability and the packing density.

Study on Wet chemical Etching Characterization of Zinc Oxide Film for Transparency Conductive Oxide Application (투명 전도성 산화물 전극으로의 응용을 위한 산화아연(ZnO) 코팅막의 습식 식각 특성연구)

  • Yoo, Dong-Geun;Kim, Myoung-Hwa;Jeong, Seong-Hun;Boo, Jin-Hyo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin films on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for high transmittance and low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 200 W, target to substrate distance of 30 mm and working pressure of 5 mTorr, highly conductive($7.4{\times}10^{-3}{\Omega}cm$) and transparent(over 85%) ZnO films were prepared. Highly oriented ZnO film in the [002] direction were obtained with specifically designed ZnO targets. Systematic study on dependence of deposition parameters on electrical and optical properties of the as-grown ZnO films were mainly investigated in this work. And for application tests using these films as transparent conductive oxide anodes, wet chemical etching behaviors of ZnO films were also investigated using various chemicals. Wet-chemical etching behavior of ZnO films were investigated using various acid solutions. The concentrations of these different acid solutions were controlled to study the etching shapes and etching rate. ZnO films were anisotropically etched at various concentrations and wet etching led to crater-like surface structure. Also we firstly found that the etching rate and etching shapes of ZnO films strongly depended on the etchant concentrations (i.e. pH) and the etching rate is exponentially decreased with increasing pH values regardless of the acid etchants.