• Title/Summary/Keyword: Optical Properties

Search Result 6,098, Processing Time 0.038 seconds

Retrieval of LIDAR Aerosol Parameter Using Sun/Sky Radiometer at Gangneung, Korea

  • Shin, Sung-Kyun;Lee, Kwon-Ho;Lee, Kyu-Tae
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.175-185
    • /
    • 2017
  • The aerosol optical properties such as depolarization ratio (${\delta}$) and aerosol extinction-to-backscatter ratios (S, LIDAR ratio) and ${\AA}ngstr{\ddot{o}m$ exponent (${\AA}$) derived from measurement with AERONET sun/sky radiometer at Gangneung-Wonju National University (GWNU), Gangneung, Korea ($37.77^{\circ}N$, $128.87^{\circ}E$) during a winter season (December 2014 - February 2015) are presented. The PM concentration measurements are conducted simultaneously and used to identify the high-PM events. The observation period was divided into three cases according to the PM concentrations. We analysed the ${\delta}$, S, and ${\AA}$ during these high PM-events. These aerosol optical properties are calculated by the sun/sky radiometer data and used to classify a type of aerosols (e.g., dust, anthropogenic pollution). The higher values of ${\delta}$ with lower values of S and ${\AA}$ were measured for the dust particles. The mean values of ${\delta}$, S, and ${\AA}$ at 440-870 nm wavelength pair (${\AA}_{440-870}$) for the Asia dust were 0.19-0.24, 36-56 sr, and 0.48, respectively. The anthropogenic aerosol plumes are distinguished with the lower values of ${\delta}$ and higher values of ${\AA}$. The mean values of spectral ${\delta}$ and ${\AA}_{440-870}$ for this case varied 0.06-0.16 and 1.33-1.39, respectively. We found that aerosol columnar optical properties obtained from the sun/sky radiometer measurement are useful to identify the aerosol type. Moreover, the columnar aerosol optical properties calculated based on sun/sky radiometer measurements such as ${\delta}$, S, and ${\AA}$ will be further used for the validation of aerosol parameters obtained from LIDAR observation as well as for quantification of the air quality.

Optical Properties Correction of a Heterogeneous Stereoscopic Camera (이종 입체 영상 카메라의 광학 특성 일치화)

  • Jung, Eun Kyung;Baek, Seung-Hae;Park, Soon-Yong;Jang, Ho-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.74-85
    • /
    • 2012
  • In this paper, we propose a optical property correction technique for a low-cost heterogeneous stereoscopic camera. Three main optical properties of a stereoscopic camera are zoom, focus, and DOF(depth of field). The difference or mis-match of these properties between two stereoscopic videos are the main causes of the visual fatigue to human eyes. The proposed correction technique reduces the difference of the optical properties between the stereoscopic videos and produces high-quality stereoscopic videos. To correct the zoom difference, a LUT(look-up table) is established to match the zoom ratio between the stereoscopic videos. To correct the DOF difference, the magnitude of image edge is measured and the lens iris is changed to control the DOF of the camera. A vertical-type stereoscopic rig is developed for the experiments of the optical property correction. Based on the experimental results, we find that a low-cost heterogeneous stereoscopic camera can be implemented, which can yield low visual fatigue to human eyes.

Properties of Defective Regions Observed by Photoluminescence Imaging for GaN-Based Light-Emitting Diode Epi-Wafers

  • Kim, Jongseok;Kim, HyungTae;Kim, Seungtaek;Jeong, Hoon;Cho, In-Sung;Noh, Min Soo;Jung, Hyundon;Jin, Kyung Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.687-694
    • /
    • 2015
  • A photoluminescence (PL) imaging method using a vision camera was employed to inspect InGaN/GaN quantum-well light-emitting diode (LED) epi-wafers. The PL image revealed dark spot defective regions (DSDRs) as well as a spatial map of integrated PL intensity of the epi-wafer. The Shockley-Read-Hall (SRH) nonradiative recombination coefficient increased with the size of the DSDRs. The high nonradiative recombination rates of the DSDRs resulted in degradation of the optical properties of the LED chips fabricated at the defective regions. Abnormal current-voltage characteristics with large forward leakages were also observed for LED chips with DSDRs, which could be due to parallel resistances bypassing the junction and/or tunneling through defects in the active region. It was found that the SRH nonradiative recombination process was dominant in the voltage range where the forward leakage by tunneling was observed. The results indicated that the DSDRs observed by PL imaging of LED epi-wafers were high density SRH nonradiative recombination centers which could affect the optical and electrical properties of the LED chips, and PL imaging can be an inspection method for evaluation of the epi-wafers and estimation of properties of the LED chips before fabrication.

Electrical and Optical Properties of F-Doped SnO2 Thin Film/Ag Nanowire Double Layers (F-Doped SnO2 Thin Film/Ag Nanowire 이중층의 전기적 및 광학적 특성)

  • Kim, Jong-Min;Koo, Bon-Ryul;Ahn, Hyo-Jin;Lee, Tae-Kun
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Fluorine-doped $SnO_2$ (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of $300^{\circ}C$, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (${\sim}14.9{\Omega}/{\Box}$), high optical transmittance (~88.6 %), the best FOM (${\sim}19.9{\times}10^{-3}{\Omega}^{-1}$), and excellent thermal stability at an annealing temperature of $300^{\circ}C$ owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.

Comparison of the concentration characteristics and optical properties of aerosol chemical components in different regions (지역별 에어로졸 화학성분 농도 및 광학특성 비교)

  • So, Yun-Yeong;Song, Sang-Keun;Choi, Yu-Na
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.107-123
    • /
    • 2019
  • The aerosol chemical components in $PM_{2.5}$ in several regions (Seoul, Busan, Daejeon, and Jeju Island) were investigated with regard to their concentration characteristics and optical properties. The optical properties of the various aerosol components (e.g., water-soluble, insoluble, Black Carbon (BC), and sea-salt) were estimated using hourly and daily aerosol sampling data from the study area via a modeling approach. Overall, the water-soluble component was predominant over all other components in terms of concentration and impact on optical properties (except for the absorption coefficient of BC). The annual mean concentration and Aerosol Optical Ddepth (AOD) of the water-soluble component were highest in Seoul (at the Gwangjin site) ($26{\mu}g/m^3$ and 0.29 in 2013, respectively). Further, despite relatively moderate BC concentrations, the annual mean absorption coefficient of BC ($21.7Mm^{-1}$) was highest in Busan (at the Yeonsan site) in 2013, due to the strong light absorbing ability of BC. In addition, high AODs for the water-soluble component were observed most frequently in spring and/or winter at most of the study sites, while low values were noted in summer and/or early fall. The diurnal variation in the AOD of each component in Seoul (at the Gwangjin site) was slightly high in the morning and low in the afternoon during the study period; however, such distinctions were not apparent in Jeju Island (at the Aweol site), except for a slightly high AOD of the water-soluble component in the morning (08:00 LST). The monthly and diurnal differences in the AOD values for each component could be attributed to the differences in their mass concentrations and Relative Humidities (RH). In a sensitivity test, the AODs estimated under RH conditions of 80 and 90% were factors of 1.2 and 1.7 higher, respectively, than the values estimated using the observed RH.

The Effect of Crystallographic and Optical Properties Under Rapid Thermal Annealing Conditions on Amorphous Ga2O3 Deposited Using RF Sputtering System (RF 스퍼터링 시스템을 이용하여 증착한 비정질 Ga2O3 박막의 급속 열처리 조건에 따른 결정성과 광학적 특성 변화)

  • Hyungmin Kim;Sangbin Park;Jeongsoo Hong;Kyunghwan Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.576-581
    • /
    • 2023
  • The Ga2O3 thin films were deposited using an RF sputtering system and the effect of crystallographic and optical properties under rapid thermal annealing conditions on Ga2O3 thin film was evaluated. A rapid thermal annealing method can fabricate a crystalline Ga2O3 thin film which is applied to various fields with a low cost and a high efficiency compared with the conventional post-annealing method. In this study, the Ga2O3 treated at 900℃ for 1 min showed the beta and gamma phases in XRD measurement. In optical properties, the crystalline Ga2O3 represented a high transmittance of more than 80% in the visible region and was calculated with a high optical bandgap energy of 4.58 eV. The beta and gamma phases Ga2O3 can be obtained by adjusting the rapid thermal annealing temperatures, and the various properties such as the optical bandgap energy can be controlled. Moreover, it is expected that crystalline Ga2O3 can be applied to various devices by controlling not only temperature but process time.

Faint Dwarf Galaxies along the Leo Large Scale HI Gas Ring

  • Park, Hyuk;Chung, Ae-Ree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • The Leo ring in the M96 group is unique in its morphology and size among the intergalactic gas features found in nearby universe. Its ring-like structure of 200 kpc on diameter appears to be orbiting around the M105-NGC 3384 pair with $1.67{\times}109\;M{\odot}$ of HI gas. While the origin of the ring - whether it is primordial or tidally stripped - is yet unclear, the optical and gas properties of dwarf galaxies associated with the gas ring help us to understand the formation process of this large scale intergalactic HI cloud. At the first step, we present the optical catalog of dwarf galaxy candidates in the Leo ring using deep optical images with MegaCam on the CFHT. Image convolution method is used in order to detect very faint dwarf galaxies. Comparing the ALFALFA HI data from the literature, we have identified that 4 dwarf candidates coexist with HI clumps. There are also 27 HI dwarfs with no optical counterpart and 12 optical dwarfs with no HI clump. In this work, we probe the optical and global gas properties of these dwarfs.

  • PDF

The Study on Properties of Multicomponent Optical Glass Fiber by Adding Ga$_2$O (Ga$_2$O$_3$첨가에 따른 다성분계 Optical Glass Fiber의 특성에 관한 연구)

  • 윤상하;강원호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.128-134
    • /
    • 1996
  • In this study, the thermal and optical properties of multicomponent glass optical fiber by adding heavy metal oxide Ga$_2$O$_3$were investigated. The fiber samples were made by rod in tube method. The optical loss of fiber was measured in 0.3~1.8${\mu}{\textrm}{m}$ wavelength region. As Ga$_2$O$_3$increased up to 20wt%, the transition and softening temperature of bulk glass were increased from 495$^{\circ}C$ to 579$^{\circ}C$ and from 548$^{\circ}C$ to 641$^{\circ}C$respectively. Whereas the thermal expansion coefficient was decreased from 102 to 79.1$\times$10$^{-7}$ $^{\circ}C$. The refractive index was increased from 1.621 to 1.665, and IR cut-off wavelength was enlarged from 4.64${\mu}{\textrm}{m}$ to 6.1${\mu}{\textrm}{m}$. The optical loss of fiber was decreased and more remarkably decreased in 1.146${\mu}{\textrm}{m}$~1.8${\mu}{\textrm}{m}$ wavelength region.

  • PDF

The Comparison of Optical Properties with Different Optical Thickness of Materials by EMP-simulation (물질의 광학적 두께에 따른 EMP-simulation을 통한 광특성 대조)

  • Jang, Kang-Jae;Jang, Gun-Ik;Lee, Nam-Il;Jung, Jae-Il;Lim, Kwang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.345-345
    • /
    • 2007
  • ZnS/$Na_3AlF_6$/ZnS/Cu multi-layered thin film were simulated by EMP. EMP is a comprehensive software package for the design and analysis of optical thin film. ZnS and $Na_3AlF_6$ was selected as a high refractive index material and low refractive index material And Cu was selected as mid reflective material. Optical properties including color effect were systematically studied in terms of different low refractive index materials thickness. $Na_3AlF_6$ were changed 0.25, 0.5, 0.75, $1.0{\lambda}$. The thin film showed $0.25{\lambda}$ : blue, purple / $0.5{\lambda}$ : yellow $0.75{\lambda}$ : blue, purple, red / $1.0{\lambda}$ : yellow, green, blue, purple. It was becaused by different optical thickness of $Na_3AlF_6$. The maximum of optical interference by refractive layer.

  • PDF

Influence of Sn Doping on Structural and Optical Properties of Zinc Oxide Nanorods Prepared Via Hydrothermal Process

  • Park, Hyunggil;Kim, Younggyu;Ji, Iksoo;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.203.2-203.2
    • /
    • 2013
  • Hydrothermally grown ZnO nanorods were synthesized with various Sn contents on quartz substrates, ranging from 0 to 2.5 at% in increment 0.5 at%. Scanning electron microscopy (SEM) and ultraviolet (UV)- visible spectroscopy were used to determine the effect of Sn doping on the structural and optical properties. In the SEM images, the nanorods have hexagonal wurzite structure and the diameter of the nanorods increase with increase in the Sn contents. The optical parameters of the Sn-doped ZnO nanorods such as the absorption coefficients, optical bandgaps, Urbach energies, refractive indices, dispersion parameters, dielectric constants, and optical conductivities were gained from the transmittance and reflectance results. In the PL spectra, the NBE peaks in the UV region decrease and blue-shift with increase in the Sn contents. In addition, the DLE peaks in the visible region of the nanorods shift toward low-energy region when the ZnO nanorods doped with various Sn contents.

  • PDF