• Title/Summary/Keyword: Optical Probe

Search Result 598, Processing Time 0.028 seconds

TEM sample preparation using micro-manipulator for in-situ MEMS experiment

  • Hyunjong Lee;Odongo Francis Ngome Okello;Gi-Yeop Kim;Kyung Song;Si-Young Choi
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.8.1-8.7
    • /
    • 2021
  • Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.

Probing neutral gas clouds and associated galaxies in the early universe

  • Ranjan, Adarsh
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2021
  • Neutral (HI) gas clouds associated with galaxies are responsible for fuelling the star-formation in the universe. In literature, the extremely strong damped Lyman-alpha absorbers (or ESDLAs) have been known to be sensitive to the effects of HI-H2 transition and star-formation in galaxies. Yet, ESDLAs are rare to probe due to the smaller cross section they subtend on the sky (similar to galaxies). In my talk, I will focus primarily on my study of the nature of ESDLAs that are observed as absorption signature along the line-of-sight (LOS) of a quasar (QSO). I will further look at the HI-H2 transition and interesting results relevant to diffuse molecular gas and the multi-phase medium (gas in different ionization states) that are associated with ESDLAs. Furthermore, I will also discuss how the ESDLA environments differ from the high star-forming and molecular environments detected in blind optical and radio surveys consecutively.

  • PDF

VERTICAL PROPERTIES OF THE GLOBAL HAZE ON TITAN DEDUCED FROM METHANE BAND SPECTROSCOPY BETWEEN 7100 AND 9200Å

  • Sim, Chae-Kyung;Kim, Sang-Joon;Kim, Joo-Hyeon;Seo, Haing-Ja;Jung, Ae-Ran;Kim, Ji-Hyun
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.3
    • /
    • pp.65-76
    • /
    • 2008
  • We have investigated the optical properties of the global haze on Titan from spectra recorded between 7100 and $9200{\AA}$, where $CH_4$ absorption bands of various intensities occur. The Titan spectra were obtained on Feb. 23, 2005 (UT), near the times of the Cassini T3 flyby and Huygens probe, using an optical echelle spectrograph (BOES) on the 1.8-m telescope at Bohyunsan Observatory in Korea. In order to derive the optical properties of the haze as a function of altitude, we developed an inversion radiative-transfer program using an atmospheric model of Titan and laboratory $CH_4$ absorption coefficients available from the literature. The derived extinction coefficients of the haze increase toward the surface, and the coefficients at shorter wavelengths are greater than those at longer wavelengths for the 30 - 120 km altitude range, indicating that the Titanian haze becomes optically thin toward the longer wavelength range. Total optical depths of the haze are estimated to be 1.4 and 1.2 for the 7270 - $7360{\AA}$ and 8940 - $9150{\AA}$ ranges, respectively. Based on the Huygens/DISR data set, Tomasko et al. (2005) reported total optical depths of 2.5 - 3.5 at $8290{\AA}$, depending on the assumed fractal aggregate particle model. The total optical depths based on our results are smaller than those of Tomasko et al., but they partially overlap with their results if we consider a large uncertainty from possible variations of the $CH_4$ mixing ratio over Titan's disk. We also derived the single scattering albedo of the haze particles as a function of altitude: it is less than 0.5 at altitudes higher than ${\sim}150\;km$, and approaches 1.0 toward the surface. This behavior suggests that, at altitudes above ${\sim}150\;km$, the average particle radius is smaller than the wavelengths, whereas near the surface, it becomes comparable or greater.

Development of Hard-wired Instrumentation and Control for the Neutral Beam Test Facility at KAERI

  • Jung Ki-Sok;Yoon Byung-Joo;Yoon Jae-Sung;Seo Min-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.359-365
    • /
    • 2006
  • Since the start of the KSTAR (Korea Superconducting Tokamak Advanced Research) project, Instrumentation and Control (I&C) of the Neutral Beam Test Facility (NB-TF) has been striving to answer diverse requests arising from various facets during the project's development and construction phases. Hard-wired electrical circuits have been designed, tested, fabricated, and finally installed to the relevant parts of the system. In relation to the vacuum system I&C, controlling functions for the rotary pumps, a Roots pump, two turbomolecular pumps, and four cryosorption pumps have been constructed. I&C for the ion source operation are the temperature and flow rate signal monitoring, Langmuir probe signal measurements, gradient grid current measurements, and arc detector circuit. For the huge power system to be monitored or safely operated, many temperature measurement functions have also been implemented for the beam line components like the neutralizer, bending magnet, ion dump, and calorimeter. Nearly all of the control and probe signals between the NB test stand and the control room were made to be transmitted through the optical cables. Failures of coolant flow or beam line vacuum pressure were made to be safely blocked from influencing the system by an appropriate interlock circuit that will shut down the extraction voltage application to the system or prevent damages to the vacuum components. Preliminary estimation of the beam power through the calorimetric measurement shows that 87.9% of the total power of the 60kV/18A beam with 200 seconds duration is absorbed by the calorimeter surface. Most of these I&C results would be highly appropriate for the construction of the main NBI facility for the KSTAR national fusion research project.

유도결합플라즈마 공정에서 조건별 플라즈마 방출광 세기 변화에 따른 전자온도의 전기적, 광학적 진단에 관한 연구

  • Lee, Ye-Seul;Park, Hye-Jin;Choe, Jin-U;Kim, U-Jae;Hwang, Sang-Hyeok;Jo, Tae-Hun;Yun, Myeong-Su;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.215.1-215.1
    • /
    • 2016
  • 플라즈마는 반도체, 디스플레이, 태양전지 등 다양한 산업 분야에 이용된다. 플라즈마 공정 시 수율 향상을 위해 플라즈마를 진단하는 기술이 필요한데, 대표적으로 전자온도가 있다. 반도체 공정의 낮은 압력과 높은 밀도의 플라즈마에서 전자온도는 1~10 eV 정도인데, 0.5 eV정도의 아주 적은 차이로도 공정 결과에 큰 영향을 미친다. 플라즈마의 전자온도를 측정하는 방법은 전기적 탐침 방법인 랑뮤어 탐침(Langmuir Probe)과 와이즈 프로브(Wise Probe)를 이용한 방법, 그리고 광학적 방법인 방출분광법(OES : Optical Emission Spectroscopy)이 있다. 전기적 탐침 방법은 직접 플라즈마 내부에 탐침을 넣기 때문에 불활성 기체를 사용한 공정에서는 잘 작동하지만 건식식각이나 증착에 사용할 경우 탐침의 오염으로 인한 오동작, 공정 시 생성된 샘플에 영향을 줄 수 있다는 단점이 있다. 반면에 방출분광법은 광학적 진단으로, 플라즈마를 사용하는 공정 진행 중에 외부에 광학계를 설치하여 플라즈마에서 발생하는 빛을 광학적으로 분석하기 때문에 공정에 영향을 미치지 않고, 공정 장비에 적용이 쉬운 장점을 가지고 있다. 본 연구에서는 RF Power를 인가한 유도결합플라즈마(ICP : Inductively Coupled Plasma) 공정에서 아르곤 가스와 산소 혼합가스 분압과 인가전압을 변화시켜 플라즈마 방출광 세기 변화에 따른 전자온도를 측정하였다. 전자온도 측정에는 전기적 방법인 랑뮤어 탐침, 와이즈 프로브를 이용한 방법과 광학적 방법인 방출분광법을 사용하여 측정하였으며 이를 비교 분석하였다.

  • PDF

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.

EFFECTS OF ALLOYING ELEMENTS ON VARIOUS PROPERTIES OF DENTAL SILVER-PALLADIUM ALLOYS (치과용(齒科用) 은(銀)-파라디움합금(合金)의 합금원소(合金元素)가 제성질(諸性質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Chun-Jin;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.22 no.1
    • /
    • pp.95-108
    • /
    • 1984
  • Even though the tarnishing and corrosion problems characteristic with dental silver-palladium alloy are not yet fully solved, it is recently widely used because of its low cost. However the effects of major alloying elements on the various properties of this system are not fully understood. The object of this research is to clarify the effects of In and Zn additives on the corrosion and tarnishing resistances and precipitation hardening behavior of this sytem, using electrodynamic polarization, immersion, and Vicker's microhardness test and X-ray diffraction and electron probe micro analysis methods. The obtained results were as follows: I. As indium content is increased, both the corrosion resistance in Cl-solution and microhardness are also increased while the tarnishing resistance is decreased. 2. As Zinc content is increased, the corrosion resistance is decreased, but tarnishing resistance is increased 3. At 70Ag-25Pd-2.5Zn-2.5In composition, the precipitation harding behavior was mot significant. The optimum aging temperature was $450^{\circ}C$ and the time was 2 hrs. The resulting specimen of this work carried 180VHN. 4. Under the heat treatment, the changes in the mechanical property are due to the changes in the shape and composition of dendrite matrix, namely, it is because of the precipitation hardening behavior which has been proved by electron probe micro analysis and optical microscopic finding.

  • PDF

Monitoring Differences in Vaginal Hemodynamic and Temperature Response for Sexual Arousal by Different Anesthetic Agents Using an O ptical Probe

  • Jeong, Hyeryun;Seong, Myeongsu;Park, Kwangsung;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.57-62
    • /
    • 2020
  • The selection of anesthetic agent is important in preclinical studies, since each agent affects the systemic hemodynamics in different ways. For that reason, we hypothesized that different anesthetic agents will result in different vaginal hemodynamic response and temperature during sexual arousal, in an animal model. To validate the hypothesis, animal experiments were performed using female rats with two anesthetic agents widely used in preclinical studies: ketamine and isoflurane. Our previously developed near-infrared-spectroscopy-based probe was used to measure the changes of oxyhemoglobin (OHb), deoxyhemoglobin (RHb), and total hemoglobin (THb) concentrations along with temperature from the animal vaginal wall. As a control, saline was administered to both isoflurane- and ketamine-anesthetized animals, and did not show any significant changes in OHb, RHb, THb, or temperature. However, an administration of apomorphine (APO, 80 ㎍/kg) induced increases of OHb (63 ± 28 μM/DPF), RHb (35 ± 20 μM/DPF), and THb (98 ± 49 μM/DPF) in ketamine-anesthetized animals, while decreases of OHb (52 ± 76 μM/DPF) and THb (38 ± 30 μM/DPF) and an increase of RHb (28 ± 51 μM/DPF) were found in isoflurane-anesthetized animals. The vaginal temperature decreased from the baseline in both ketamine-(0.42℃) and isoflurane-(1.22℃)anesthetized animals. These results confirmed our hypothesis, and suggest that a preclinical study monitoring hemodynamic responses under anesthesia should employ an appropriate anesthetic agent for the study.

Field Probe Sensor Based on the Electro-Optic Effect (전기광학효과를 이용한 전계 프로브 센서)

  • Kyoung, Un-Hwan;Kim, Gun-Duk;Eo, Yun-Seong;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.71-75
    • /
    • 2009
  • A compact electric field probe sensor incorporating two different electro-optic materials of $LiNbO_3$ and GaAs was proposed and fabricated, and it was used to measure the strength of the horizontal and vertical fields generated by a microstrip ring-resonator filter. The sensitivities of the sensors in $LiNbO_3$ and GaAs were $9.315{\mu}V/\sqrt{Hz}$ and ${\sim}49.346{\mu}V/\sqrt{Hz}$ respectively, and their signal to noise ratios were approximately ${\sim}50\;dB$ and ${\sim}40\;dB$ respectively. And the operating frequency range was up to ${\sim}1.2\;GHz$. The electric field profile for the test circuit was scanned and found to be in good agreement with that obtained by using the HFSS simulation.

The Development of Beamline Hutch Structures at PAL-XFEL (PAL-XFEL 빔라인 허치 구조물 개발)

  • Kim, Seungnam;Kim, Myeongjin;Kim, Seonghan;Kim, Yeongchan;Shin, Hocheol;Kim, Jihwa;Kim, Kyeongsuk;Kim, Kwangwoo;Eom, Intae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.567-577
    • /
    • 2016
  • The hutches which are installed in the beamline are largely classified into two, i.e XPP (X-ray pump probe) and CXI (Coherent X-ray image). Laser room is installed on the hutch and provides laser to XPP and CXI simultaneously. And two hutches have heavy crane to install some optics equipments. Safety and reliability of hutch structures should be taken into account for the precise operating of the laser facilities, so vibration analysis is essential to do this. The main purpose of vibration analysis is to install hutch structures with large stiffness. We have changed materials specification several times to install hutch structures having strong stiffness. Now hutch structures were installed and checked vibration status at laser room and XPP hutch. The results of laser table and robot arm satisfy vibration criteria. This paper explains about the design and vibration analysis of hutch structures.