• Title/Summary/Keyword: Optical Observation

Search Result 756, Processing Time 0.029 seconds

Contamination Control of Optical Observation Satellite

  • Lee, Chang-Ho;Lee, Choon-Woo;Cho, Young-Jun;Whang, Do-Soon
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.28.3-28.3
    • /
    • 2008
  • Contamination has the potential for degrading the performance of the optical payload beyond the limits defined by mission requirements, therefore it must be considered a risk to system performance and must be mitigated. To mitigate contamination problem, contamination budget is allocated according to the contamination requirements which is derived from contamination effect analysis. Once the contamination budget is allocated, prediction for on-ground and in-orbit contaminants amounts and cleanliness control is performed. In this article, typical contamination control for observation satellite is described.

  • PDF

COMS EAST/WEST STATIONKEEPING FUEL CONUMPTION CONSIDERING MANDATORY OBSERVATION TIME SOLOTS OF OPTICAL PAYLOADS

  • Park, Bong-Kyu;Lee, Sang-Cherl;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.166-170
    • /
    • 2007
  • This paper discusses stationkeeping of COMS which accommodates two optical payloads. In order to provide good quality images to the users, the east/west stationkeeping which is strong perturbing sources shall be performed outside of mandatory observation time slots asked by users. If the east/west stationkeeping time is resulted inside of the mandatory time slots, it shall be shifted in order to be performed outside of mandatory time slot, or a new stationkeeping shall be planned. This constraint is expected to ask additional fuel consumption in comparison with tradition stationkeeping. This paper analyzes the impact of mandatory time slots to the stationkeeping fuel consumption. Orbit simulations have been conducted to determine validity of given constraints in the light of fuel requirement and stationkeeping accuracy.

  • PDF

THERMAL CONTROL DESIGN FOR COMS (COMS 특별세션)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF

A Study on an Automatic Multi-Focus System for Cell Observation

  • Park, Jaeyoung;Lee, Sangjoon
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • This study is concerned with the mechanism and structure of an optical microscope and an automatic multi-focus algorithm for automatically selecting sharp images from multiple foci of a cell. To obtain precise cell images quickly, a z-axis actuator with a resolution of $0.1{\mu}m$ was designed to control an optical microscope Moreover, a lighting control system was constructed to select the color and brightness of light that best suit the object being viewed. Cell images are captured by the instrument and the sharpness of each image is determined using Gaussian and Laplacian filters. Next, cubic spline interpolation and peak detection algorithms are applied to automatically find the most vivid points among multiple images of a single object. A cancer cell imaging experiment using propidium iodide staining confirmed that a sharp multipoint image can be obtained using this microscope. The proposed system is expected to save time and effort required to extract suitable cell images and increase the convenience of cell analysis.

Multi-Messenger Astronomy with GECKO, Gravitational-wave EM Counterpart Korean Observatory - Past, Present, and Future

  • Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.35.3-35.3
    • /
    • 2019
  • The new era of multi-messenger astronomy (MMA) has arrived in 2017 with the detection of the binary neutron star merger in both gravitational wave (GW) and electromagnetic radiation (EM). Now, the new run of GW detectors are providing numerous GW events and the number GW events are expected to increase dramatically in future as the GW sensitivities improve. When the GW studies are combined with EM counterpart observations, a great synergy is expected in many areas of study such as the physical process following the compact object merger, the environment of such events (and galaxy evolution), and cosmology, Therefore, it has now become crucial to identify and characterize these GW events in optical/IR EM. In the past, we have been performing optical/NIR observation of GW events using a worldwide network of more than 10 telescopes, and are getting more actively involved in MMA of GW sources. In this talk, we will present our network of telescopes, the EM follow-up observation results of GW events including GW170817 and the O3 events in 2019, and the current issues in MMA. We will also give the future prospects of MMA, showing the forecast for the GW events and the outlook of EM MMA observations.

  • PDF

Gravitational-wave Electromagnetic Counterpart Korean Observatory (GECKO): Network of Telescopes and Follow-up Observation of GW190425

  • Paek, Gregory S.H.;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.36.3-37
    • /
    • 2020
  • Recent observation of the neutron star merger event, GW170817, through both gravitational wave (GW) and electromagnetic wave (EM) observations opened a new way of exploring the universe, namely, multi-messenger astronomy (MMA). One of the keys to the success of MMA is a rapid identification of EM counterpart. We will introduce GW follow-up observation project in Korea for hunting GW EM counterpart rapidly and its strategy for prioritization of GW source host galaxy candidates. Our method relies on recent simulation results regarding plausible properties of GW source host galaxies and the low latency localization map from LIGO/Virgo. We will show a test result for both binary neutron star merger events using previous event and describe observing strategy with our facilities for GW events during the ongoing LIGO/Virgo O3 run. Finally, we report the results of optical/NIR follow-up observation of GW190425, the first neutron.

  • PDF

Measurements of Cloud Raindrop Particles Using the Ground Optical Instruments and Small Doppler Radar at Daegwallyeong Mountain Site

  • Oh, Sung-Nam;Jung, Jae-Won
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.293-306
    • /
    • 2013
  • Hydrometeor type and Drop Size Distribution (DSD) in cloud are the fundamental properties that may help explain the rain formation processes and determine the parameters of radar meteorology. This study presents a preliminary analysis of hydrometeor types and DSD data of cloud measured with a PARSIVEL (PARticle SIze and VELocity) optical disdrometer at the site of Cloud Physics Observation System (CPOS, $37^{\circ}41^{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m from sea level) in Daegwallyeong mountainside of Korea. The method has been validated by comparing the observed rainfall rates with the computed ones from the fitted distribution, using the physical data such as DSD, terminal velocity, and rain intensity which were measured by a Micro-Rain Radar (MRR) and a PARSIVEL optical disdrometer. The analysis period started in three cases: on rainy days with light rain (15.5 mm), moderate rain (76 mm), and heavy rain (121 mm), from March to November 2007, respectively.

Interaction of Laser Beam with PZT - Target and Observation of Laser - Induced Plume and Particle Ejection (Laser와 PZT - Target간의 반응과 그에 따른 Plume 형성 및 입자 방출에 관한 연구)

  • Lee, Byeong-U
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.93-102
    • /
    • 1996
  • Laser-induced plume and laser-target interaction during pulsed laser deposition are demonstrated for a lead zirconate titanate (PZT). A KrF excimer laser (wavelength 248nm) was used and the laser was pulsed at 20Hz, with nominal pulse width of 20ns. The laser fluence was~$16J/cm^2,$ with 100mJ per pulse. The laser-induced plasma plume for nanosecond laser irradiation on PZT target has been investigated by optical emission spectra using an optical multichannel analyzer(OMA) and by direct observation of the plume using an ICCD high speed photography. OMA analysis showed two distinct ionic species with different expansion velocities of fast or slow according to their ionization states. The ion velocity of the front surface of the developing plume was about $10^7$cm/sec and corresponding kinetic energy was about 100eV. ICCD photograph showed another kind of even slower moving particles ejected from the target. These particles considered expelled molten parts of the target. SEM morphologies of the laser irradiated targets showed drastic melting and material removal by the laser pulse, and also showed the evidence of the molten particle ejection. The physics of the plasma(plume) formation and particle ejection has been discussed.

  • PDF

Aerosol Optical Thickness Measurements from the Microtops-II Multi-wavelength Radiometer (마이크로탑스 II 다파장 복사계를 이용한 대기 에어로솔 광학 두께 관측)

  • Lee, Kwon-Ho;Lee, Kyu-Tae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.57-66
    • /
    • 2016
  • Aerosol optical thickness (AOT) and ${\AA}ngstr{\ddot{o}}m$ exponents were monitored at the KIU site ($N35.91^{\circ}$, $E128.80^{\circ}$) during the continuous observation period of 5 November 2010~19 March 2013 using a Microtops-II handheld munti-wavelenth radiometer. Comparisons of AOT values from the Microtops-II with the Sun-sky radiometer data from the Aerosol Robotic Network (AERONET) showed very good agreements: correlation coefficients are lies between 0.98 and 0.99, slopes range from 0.98 to 1.01, and intercepts are smaller than 0.008 at five wavelengths (380 nm, 440 nm, 500 nm, 675 nm, 870 nm). During the observation period, the Microtops-II AOT and ${\AA}ngstr{\ddot{o}}m$ exponents are ${\tau}_{500}=0.560{\pm}0.351$, ${\alpha}_{500-870}=1.135{\pm}0.445$. Fine mode aerosols appear to dominate in the study region with significant contributions from small particles.