• Title/Summary/Keyword: Optical Mirror

Search Result 761, Processing Time 0.025 seconds

Deformation Measurement of Well Thinning Elbow by Using Shearography (전단간섭법을 이용한 감육 곡관부의 변형 계측)

  • Jung, Hyun-Chul;Kim, Koung-Suk;Chang, Ho-Sub;Jung, Sung-Wook;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.321-328
    • /
    • 2006
  • In this study, the deformation oi wall thinning elbow is measured and the position of the internal thinning defect is found out by shearography. Shearography is an optical method which has applied to nondestructive testing (NDT) and the strain/stress and deformation analysis. This technique has the merit of the directly measuring the first derivative of displacement with sensitivity which can be adjusted by handling the tilt mirror in the interferometer. In this paper, we tested carbon steel pipe locally wall thinned and loaded internal pressure and the shearography was applied to measure the out-of-plane deformation of wall thinning elbow and to investigate the internal thinning defect of it. From the results, it was confirmed that this technique is proper to the practical application on the pipe line system with internal defect.

Optical reflectance of TiO2/SiO2 multilayer coating flat mirrors (TiO2/SiO2 다층 박막 평판 mirror의 광학적 반사)

  • Lee, Chanku;Lee, Sudae;Joung, Maengsig
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.1
    • /
    • pp.75-78
    • /
    • 2002
  • Thirty three layer $TiO_2/SiO_2$ coating mirrors with high reflectance through a 620~820nm wavelength range have been designed and fabricated by electron beam evaporation method. Multilayer films were deposited on glass(BK7) and sequentially. The high reflector design is based on alternating high and low refractive index layers. $n_H$ and $n_L$ such that a "stopband"(or area of high reflectivity) is created that is centered around the design wavelength. ${\lambda}_0$. The measured transmittance spectrum with an incident wavelength at an incident angle of $40^{\circ}{\pm}7^{\circ}$ exhibited a reflectance of 99.9% at the wavelength of 620~820nm but high peak transmittance in the wavelength region from 700 to 740nm.

  • PDF

Design of a Simply Structured High-efficiency Polarization-independent Multilayer Dielectric Grating for Spectral Beam Combining (SBC 시스템 구성을 위한 단순한 구조를 가지는 고효율 무편광 유전체 다층박막 회절격자 설계)

  • Cho, Hyun-Ju;Kim, Gwan-Ha;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Sang-In;Cho, Joonyoung;Kim, Hyun Tae;Kwak, Young-seop
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • We design a polarization-independent dielectric multilayer thin-film diffraction grating for a spectral-beam-combining (SBC) system with a simple grating structure and low aspect ratio. To maintain the high quality of the SBC beam, we propose a multilayer mirror structure in which the wavefront distortion due to stress accumulation is minimized. Moreover, to prevent light absorption from contamination, an optimized design to minimize the grating thickness was performed. The optimally designed diffraction grating has 99.36% diffraction efficiency for -1st-order polarization-independent light, for incidence at the Littrow angle and 1055-nm wavelength. It is confirmed that the designed diffraction grating has sufficient process margin to secure a polarization-independent diffraction efficiency of 96% or greater.

The Spatial Coherence Characteristics of Wavefront of NBUR Nd:YAG Laser Output Beam (NBUR Nd:YAG 레이저 위상파면의 공간적 가간섭성 특성)

  • 박대윤;최승호;이승걸
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.288-295
    • /
    • 1995
  • We have studied about spatial wavefront analysis of a pulsed laser output beam by means of an imaging unstable ring resonator with an infinite Fresnel number. We have constructed a Newtonian telescope type NBUR (Negative Branch Unstable Ring) Nd:YAG laser with 4 plane mirrors. Provided that the NBUR resonator is under self imaging condition, the resonator could be reduced diffraction effects which were occuring to the beam transmitting through the circular aperture of scraper mirror in the resonator. We have observed enhancement in the spatial coherence of wavefronts of laser beam due to the iterative round trips of the self imaging beam inside the ring resonator. The information on the spatial wavefronts was determined by the fringe patterns from Mach-Zehnder interferometer and the fringe analysis by means of the Fourier transform method showed the distortion of wavefronts of less than 0.2), In comparison with a standing wave type resonator, we have confirmed that the spatial coherence of the NBUR Nd:YAG laser output beam was enhanced as much as 75%. s 75%.

  • PDF

The Electronics system of the Ultra Fast Flash Observatory Pathfinder

  • Kim, Ji Eun;Choi, Ji Nyeong;Choi, Yeon Ju;Jeong, Soomin;Jung, Aera;Kim, Min Bin;Kim, Sug-Whan;Kim, Ye Won;Lee, Jik;Lim, Heuijin;Min, Kyung Wook;Na, Go Woon;Park, Il Hung;Ripa, Jakub.;Suh, Jung Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.207.2-207.2
    • /
    • 2012
  • The Ultra Fast Flash Observatory (UFFO) pathfinder consists of the UFFO Burst Alert X-ray Trigger telescope (UBAT) and the Slewing Mirror Telescope (SMT). They are controlled by the UFFO Data Acquisition system (UDAQ). The UBAT triggers Gamma-Ray Bursts(GRBs) and sends the position information to the SMT. The SMT slews the motorized mirror rapidly to the GRB position to take the UV/Optical data within a second after trigger. The UDAQ controls each instrument, communicates with the satellite, collects the data from UBAT and SMT, and transfers them to the satellite. Each instrument uses its own field programmable gates arrays (FPGA) for low power consumption and fast processing, and all functions are implemented in FPGAs without using microprocessors. The entire electronics system of the UFFO pathfinder including architecture, control, and data flow will be presented.

  • PDF

Effect of the Thermal Lensing on stable Region, Beam Waist and Astigmatic Compensation of Z-fold Cr4+ : YAG laser Cavity (Cr4+ : YAG 레이저에서 열 렌즈 효과에 따른 공진기의 안정영역과 빔 허리 및 비점수차의 보상)

  • Lee, Bong-Yeon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.447-454
    • /
    • 2006
  • We obtained analytic solutions of boundary conditions to the stable region of Z-fold $Cr^{4+}$ : YAG laser cavity when the conditions are with and without thermal tensing effect. Also we investigated the influence of the thermal tensing effect on the stability of cavity, beam waist, and astigmatic compensation using aberration transformation matrices. The thermal tensing effect almost has no influence on the stable region of the cavity when the crystal is located in the middle of two concave mirrors and when the distances from the concave mirror to the reflecting mirror and the output coupler are the same. The beam waist, however, is affected more in a tangential plane than in a sagittal plane, and so it is difficult to have astigmatic compensation when the thermal tensing effect exists. This result means that the thermal tensing effect should be considered even for the Kerr-lens mode-locking.

Development Plan for the First GMT ASM Reference Body

  • Yang, Ho-Soon;Oh, Chang-Jin;Biasi, Roberto;Gallieni, Daniele
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.76.3-77
    • /
    • 2021
  • GMT secondary mirror system consists of 7 segmented adaptive mirrors. Each segment consists of a thin shell mirror, actuators and a reference body. The thin shell has a few millimeters of thickness so that it can be easily bent by push and pull force of actuators to compensate the wavefront disturbance of light due to air turbulence. The one end of actuator is supported by the reference body and the other end is adapted to this thin shell. One of critical role of the reference body is to provide the reference surface for the thin shell actuators. Therefore, the reference body is one of key components to succeed in development of GMT ASM. Recently, Korea Research Institute of Standards and Science (KRISS) and University of Arizona (UA) has signed a contract that they will cooperate to develop the first set of off-axis reference body for GMT ASM. This project started August 2021 and will be finished in Dec. 2022. The reference body has total 675 holes to accommodate actuators and 144 pockets for lightweighting. The rear surface has a curved rib shape with radius of curvature of 4387 mm with offset of 128.32mm. Since this reference body is placed just above the thin shell so that the front surface shape needs to be close to that of thin shell. The front surface has a concave off-axis asphere, of which radius of curvature is 4165.99 mm and off-axis distance is about 1088 mm. The material is Zerodur CTE class 1 (CTE=0.05 ppm/oC) from SCHOTT. All the actuator holes and pockets are machined normal to the front surface. It is a very complex challenging optical elements that involves sophisticated machining process as well as accurate metrology. After finishing the fabrication of reference body in KRISS, it will be shipped to UA for final touches and finally sent to Adoptica in Italy, in early 2023. This paper presets the development plan for the GMT ASM Reference Body and relevant fabrication and metrology plans.

  • PDF

Simulation and Examination for Beam Profile of DFB Laser (DFB 레이저의 빔 분포 시뮬레이션과 검정)

  • Kwon, Kee-Young;Ki, Jang-Geun
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2019
  • Lasers for optical broadband communication systems should have excellent frequency selectivity and modal stability. DFB lasers have low lasing frequency shift during high speed current modulation. In this paper, we have developed a simulation software and analysed beam profiles of a lasing mode in longitudinal direction of an 1.55um DFB laser with two mirrors and without anti-reflection coatings, that have both an index- and gain-gratings. As the phases of the index and gain gratings on the mirror faces are varied, the beam profiles |R(z)| and |S(z)| of the lasing mode with the emitted power ratio Pl/pr are analysed and examined. In order to reduce the threshold current of a lasing mode and enhance the frequency stability, κL should be greater than 8, regardless of the grating phases on the mirror faces.

A Study on Optical Coherence Tomography System by Using the Optical Fiber (광섬유를 이용한 광영상단층촬영기 제작에 관한 연구)

  • 양승국;박양하;장원석;오상기;이석정;김기문
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, we have studied the OCT(Optical Coherence Tomography) system which has been advantages of high resolution, 2-D cross-sectional images, low cost and small size configuration. The characteristics of light source determine the resolution and coherence length. The light source has a commercial SLD with a central wavelength of 1,285 ill11, 35.3 nm(FWHM). The optical delay line is necessary to make equal with the optical path length to scattered light or reflected light from a sample. In order to make equal the optical path length, the stage that is attached to a reference mirror is controled by a step motor. And the interferometer is configured with the Michelson interferometer by using a single mode fiber, and the scanner can be focused on the sample by using a reference ann Also, the 2-dimension cross-sectional images were measured with scanning the transverse direction of the sample by using a step motor. After detecting the internal signal of lateral direction, a scanner is moved to obtain the cross-sectional image of 2-dimension by using step motor. A photodiode, which has high detection sensitivity and excellent noise characteristics has been used. The detected small signal has a noise and interference. After filtering and amplifying the signal, the output signal is demodulated the waveform And then, a cross-sectional image is seen through converting this signal into a digitalized signal by using an AID converter. The resolution of the sample is about 30${\mu}{\textrm}{m}$, which corresponds to the theoretical resolution. Also, the cross-sectional images of onion cells were measured in real time scheme.

Optical Design of a Reflecting Omnidirectional Vision System for Long-wavelength Infrared Light (원적외선용 반사식 전방위 비전 시스템의 광학 설계)

  • Ju, Yun Jae;Jo, Jae Heung;Ryu, Jae Myung
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.37-47
    • /
    • 2019
  • A reflecting omnidirectional optical system with four spherical and aspherical mirrors, for use with long-wavelength infrared light (LWIR) for night surveillance, is proposed. It is designed to include a collecting pseudo-Cassegrain reflector and an imaging inverse pseudo-Cassegrain reflector, and the design process and performance analysis is reported in detail. The half-field of view (HFOV) and F-number of this optical system are $40-110^{\circ}$ and 1.56, respectively. To use the LWIR imaging, the size of the image must be similar to that of the microbolometer sensor for LWIR. As a result, the size of the image must be $5.9mm{\times}5.9mm$ if possible. The image size ratio for an HFOV range of $40^{\circ}$ to $110^{\circ}$ after optimizing the design is 48.86%. At a spatial frequency of 20 lp/mm when the HFOV is $110^{\circ}$, the modulation transfer function (MTF) for LWIR is 0.381. Additionally, the cumulative probability of tolerance for the LWIR at a spatial frequency of 20 lp/mm is 99.75%. As a result of athermalization analysis in the temperature range of $-32^{\circ}C$ to $+55^{\circ}C$, we find that the secondary mirror of the inverse pseudo-Cassegrain reflector can function as a compensator, to alleviate MTF degradation with rising temperature.