• Title/Summary/Keyword: Optical Interferometer

Search Result 614, Processing Time 0.046 seconds

Development of RSOD using optical phase modulator (광위상 변조기를 이용한 RSOD 개발)

  • Hwang, Dae-Seok;Lee, Young-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.14-18
    • /
    • 2006
  • Optical interferometer is used for various optical measurement fields in optical metrology and biomedical measurements. In an optical interferometer, optical delay line has to change the optical path length of a reference arm to match with that of a sample in and it's speed was limited by reference arm movement speed. In this paper, we proposed an all-fibered RSODRapid Scanning-speed Optical Delay) without any mechanical movement, and we applied this system to optical interferometer. Experimental setup is consist of pulse laser source (center wavelength 1304nm, pulse width 30ps, repetition rate 10GHz), two phase modulators and dispersive shifted fiber. As experimental results, we obtain the maximum time delay of 11ps at 10MHz repetition rate, and it is easily tuneable the time delay by modulation frequency and modulation voltage.

Fiber optic pressure sensor (광섬유 압력센서)

  • 이기완;배준형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.640-643
    • /
    • 1996
  • In this paper, a sensitivity of the fiber optic pressure sensor in water is demonstrated. A single mode optical fiber Mach-Zehnder interferometer used to detect the change in optical path length produced by the change of fiber optic strain in water. The sensitivity with this system measured 100.mu.psia through an experiment in the static response.

  • PDF

Fiber Brags Grating Fabrication using Interferometer with Phase Mask (위상 마스크 간섭계를 이용한 광섬유 격자 제작)

  • 유계준;이호준;김병규;김선관;이원준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.194-195
    • /
    • 2001
  • We fabricated fiber bragg gratings using interferometric method with Phase mask. The interferometer consisted of two plane-parallel mirrors and a phase mask perpendicular to mirrors. The Gratings were written using an Argon-ion laser. The experimental setup could change Bragg wavelength given by the phase mask. (omitted)

  • PDF

Quadrature-detection-error Compensation in a Sinusoidally Modulated Optical Interferometer Using Digital Signal Processing

  • Hwang, Jeong-hwan;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.204-209
    • /
    • 2019
  • In an optical interferometer that uses sinusoidal modulation and quadrature detection, the amplitude and offset of the interference signal vary with time, even without considering system noise. As a result, the circular Lissajous figure becomes elliptical, with wide lines. We propose and experimentally demonstrate a method for compensating quadrature detection error, based on digital signal processing to deal with scaling and fitting. In scaling, fluctuations in the amplitudes of in-phase and quadrature signals are compensated, and the scaled signals are fitted to a Lissajous unit circle. To do so, we scale the average fluctuation, remove the offset, and fit the ellipse to a unit circle. Our measurements of a target moving with uniform velocity show that we reduce quadrature detection error from 5 to 2 nanometers.

Fizeau interferometry using angled end-face optical fiber source (경사 단면 광섬유 광원을 이용한 피조 간섭계)

  • 김학용;김병창;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.334-338
    • /
    • 2001
  • A Fizeau interferometer without beam splitter was constructed. Single-mode optical fiber was used as a spherical wave source and the face of fiber end was polished and coated to be a reflecting surface. The reflecting surface was angled so that interference fringe could be detected by CCD camera. Beam splitter in front of a spherical wave source could distort the wave front and that was one of the component error sources. With the proposed configuration there was no need to place beam splitter in the system. Improvement of phase measuring accuracy was evaluated quantitatively by comparing the result of this setup with that of a conventional Fizeau interferometer. Wave front of the angled end-face optical fiber source was also measured to verify its sphericity by PS/PDI (Phase Shifting/Point Diffraction Interferometer). The principle of this technique was presented and the experimental results and its applications were discussed. ussed.

  • PDF

Unambiguous 3D Surface Measurement Method for a Micro-Fresnel Lens-Shaped Lenticular Lens Based on a Transmissive Interferometer

  • Yoon, Do-Young;Kim, Tai-Wook;Kim, Minsu;Pahk, Heui-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • The use of a laser interferometer as a metrological tool in micro-optics measurement is demonstrated. A transmissive interferometer is effective in measuring an optical specimen having a high angle slope. A configuration that consists of an optical resolution of 0.62 micron is adapted to measure a specimen, which is a micro-Fresnel lens-shaped lenticular lens. The measurement result shows a good repeatability at each fraction of facets, however, a reconstruction of the lens shape profile is disturbed by a known problem of $2{\pi}$-ambiguity. To solve this $2{\pi}$-ambiguity problem, we propose a two-step phase unwrapping method. In the first step, an unwrapped phase map is obtained by using a conventional unwrapping method. Then, a proposed unwrapping method based on the shape modeling is applied to correct the wrongly unwrapped phase. A measured height of each facet is compared with a profile result measured by AFM.

A Study on the Design and Performance of Integrated-Optic Biosensor utilizing the Multimode Interferometer based on Si3N4 Rib-Optical Waveguide and Evanescent-Wave (Si3N4 립-광도파로 기반 다중모드 간섭기와 소산파를 이용하는 집적광학 바이오센서 설계 및 성능에 관한 연구)

  • Jung, Hong sik
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.409-418
    • /
    • 2020
  • In this paper, an integrated optical, evanescent-wave biosensor utilizing a multimode interferometer based on a Si3N4 rib-optical waveguide consisting of the Si/SiO2/Si3N4/SiO2 stacked structure was described. The theoretical background of the multimode interferometer was reviewed, and the structure and design process were presented through numerical computational analysis. We analyzed how the dimension (length, width) of the multimode interferometer affected the sensor performance. It has been confirmed through computational analysis that the changes in the refractive index of an analyte greatly affect the mode pattern formation position and output optical power of a multimode interferometer, and proved that this principle could be applied to integrated-optic biosensor.