• Title/Summary/Keyword: Optical Films

Search Result 2,894, Processing Time 0.03 seconds

Effect of annealing om p-type Al/SnO2 transparent conductive multilayer films (p-형 Al/SnO2 투명 전도성 다층박막에 미치는 열처리의 영향)

  • Park, Geun-Yeong;Kim, Seong-Jae;Gu, Bon-Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.27-28
    • /
    • 2014
  • 투명전극이란 전기 전도도를 갖는 동시에 가시광선 영역에서 빛을 투과하는 성질을 가지는 소재이다. 일반적으로 가시광선 영역(380nm~780nm)에서 80%이상의 광 투과도를 가지며, 비저항이 $10^{-3}{\Omega}{\cdot}cm$ 이하, optical band gap 이 3.3 eV 이상인 물질을 TCO(Transparent Conducting oxide)라고 한다. 현재까지 국내의 TCO 관련 연구는 터치패널, 디스플레이, 태양전지 등 광전자분야에서 가장 널리 사용되고 있는 ITO(Sn:In2O3)에 치중되어 있으며, 관련 연구도 거의 디스플레이 맞춤형 연구개발이 주류를 이루어왔다. ITO가 전기전도성이 우수하고 동시에 가시광선 영역에서의 투과율도 80%이상으로 전기적, 광학적 특성이 우수하다는 장점을 가지고 있으나, In의 희소성으로 인한 고가격, 유독성, 접착력 문제 때문에 이를 대체하기 위해 제조원가가 ITO에 비하여 월등히 저렴하고 내화학성과 내마모성이 우수하면서도, 가시광선 영역에서의 광투과율이 80%이상으로 좋다는 $SnO_2$에 관한 연구가 활발히 진행되어 왔다. 적절한 dopant를 첨가하여 $SnO_2$자체의 높은 광학적 투과도를 유지하면서 전기전도성을 더 높일수 있고, 투명전극이 가져야 할 고온 안정성을 가지고 있으며 비독성이고 수소 플라즈마에 대한 내성이 더 클 뿐만 아니라 저온에서 성장이 가능하다. $SnO_2$의 전기 전도도를 높이기 위한 Al, In, Ga, B와 같은 3족 원소가 $SnO_2$의 n형 dopant로 널리 사용되고 있다. 그 중 Al은 반응성이 커서 박막 증착 중에 산화되기 쉬운 반면, 전기적 특성 및 광학적 특성의 향상을 이룰 수 있다. 본 연구에서는 Rf Sputtering법을 사용하여 quartz기판 위에 다층박막 형태의 투명전도막을 제작한 후, 열처리를 수행, 이에 의한 다층박막 내 계면간 상호확산 현상을 이용하여 투명 전도막의 특성변화를 관찰하였다. 박막의 구조적 특성은 XRD장비를 사용하여 분석하였으며, 전기적, 광학적 특성은 각각 표면저항기, 홀 측정 장비, 그리고 UV-VIS-NI를 사용하여 확인하였다.

  • PDF

The Electro-optical Propeties of Multilayer EL devices by blending TPD with P3TH as Emitting layer (TPD와 P3HT의 블렌드한 다층막 EL 소자의 전기-광학적 특성)

  • Kim, Dae-Jung;Gu, Hal-Bon;Kim, Hyung-Kon;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.542-545
    • /
    • 2002
  • High performance organic electroluminescnet(EL) devices which are composed of organic thin multilayer films are fabricated. The basic structure is ITO/Emitting layer/LiF/Al in which have a blended emitting layer. The emitting layer is consisted of a host material(N,N' diphenyl-N,N' (3-methyl phenyl)-l,l'-biphenyl-4,4'diamine)(TPD)) and a guest emitting material(poly(3-hexylthiophehe)(P3HT)). We think that the energy transfer in blending layer occurred from TPD to P3HT. Red emitting multilayer EL devices were fabricated using tris(8-hydroxyqunolinate) aluminum$(Alq_3)$ as electron transport material. The device structure of ITO/blending layer(TPD+P3HT)$/Alq_3$/LiF/Al was employed. In the Voltage-current-luminance characteristics of multilayer device, the device tum on at the 2V and the luminance of $10{\mu}W/cm^2$ obtain at l0V. Red emission peak at 640nm was observed with this device structure. We have presented evidence that the excitation energy migration between a polymeric host and guest has to be explained. And by using multilayer, the red light emitting EL device enhances not only Voltage-current-luminance characteristic but also stability of device.

  • PDF

The reflection characteristic of one-dimensional photonic crystal using by chalcogenide thin films (칼코게나이드 박막을 이용한 일차원 photonic crystal의 반사 특성)

  • Lee, Jung-Tae;Shin, Kyung;Yeo, Cheol-Ho;Ku, Dae-Sung;Kim, Jong-Bin;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.120-123
    • /
    • 2002
  • In this study it had an excellent optical characteristic, it followed in the creation rate and the refractive index regulation to the ease. Chalcogenide produced the $As_{45}Se_{45}Te_{10}$ thin film and the $MgF_{2}$ thin film. It measured thin film plan simulation, and the thin film has a 1 -dimensional photonic band gap. The chalcogenide $As_{45}Se_{45}Te_{10}$ thin film was measured with the fact that it has a high refractive index (2.6~2.9). The $As_{45}Se_{45}Te_{10}$ and $MgF_{2}$ thin film, have a high refractive index and a low refractive index, it used a simulation and planed period 5-pairs structure, the result was from 500nm to 800nm. It will be able to confirm the characteristic which most of the incidence light reflects, the He-Ne (632.8nm) laser was irradiated in the thin film which stabilized the thin film. $As_{45}Se_{45}Te_{10}$ (high refractive index layer: H) and $MgF_{2}$ (low refractive index layer: L) results which plans the thin film with glass/LHLHLLHLHL/air structure, 632.8nm against transmitance, increased a lot. An application possibility with the filter against a specific wave length was confirmed.

  • PDF

Phase Change Characteristics of Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) Thin Film for PRAM (PRAM을 위한 Aux(Ge2Sb2Te5)1-x (x=0, 0.0110, 0.0323, 0.0625) 박막의 상변환 특성)

  • Shin, Jae-Ho;Baek, Seung-Cheol;Kim, Byung-Cheul;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.404-409
    • /
    • 2011
  • An amorphous $Ge_2Sb_2Te_5$ thin film is one of the most commonly used materials for phase-change data storage. In this study, $Au_x(Ge_2Sb_2Te_5)_{1-x}$ thin film amorphous-to-crystalline phase-change rate were evaluated in using 658 nm laser beam. The focused laser beam with a diameter <10 ${\mu}m$ was illuminated in the power (P) and pulse duration (t) ranges of 1-17 mW and 10-460 ns, respectively, with subsequent detection of the responsive signals reflected from the film surface. We also evaluated the material characteristics, such as optical absorption and energy gap, crystalline phases, and sheet resistance of as-deposited and annealed films. The result of experiments showed that the thermal stability of the $Ge_2Sb_2Te_5$ film is largely improved by adding Au.

Effect of Selenium Doping on the Performance of Flexible Cu2SnS3(CTS) Thin Film Solar Cells (Mo 유연기판을 이용한 Cu2SnS3 박막 태양전지의 셀레늄 도핑 효과)

  • Lee, In Jae;Jo, Eunae;Jang, Jun Sung;Lee, Byeong Hoon;Lee, Dong Min;Kang, Chang Hyun;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.68-73
    • /
    • 2020
  • Due to its favorable optical properties, Cu2SnS3 (CTS) is a promising material for thin film solar cells. Doping, which modifies the absorber properties, is one way to improve the conversion efficiency of CTS solar cells. In this work, CTS solar cells with selenium doping were fabricated on a flexible substrate using sputtering method and the effect of doping on the properties of CTS solar cells was investigated. In XRD analysis, a shift in the CTS peaks can be observed due to the doped selenium. XRF analysis confirmed the different ratios of Cu/Sn and (S+Se)/(Cu+Sn) depending on the amount of selenium doping. Selenium doping can help to lower the chemical potential of sulfur. This effectively reduces the point defects of CTS thin films. Overall improved electrical properties were observed in the CTS solar cell with a small amount of selenium doping, and a notable conversion efficiency of 1.02 % was achieved in the CTS solar cell doped with 1 at% of selenium.

Long-Range Surface-Plasmons Excited on Double-Layered Metal Waveguides (이중-금속 장거리 표면-플라즈몬 도파로)

  • Joo, Yang-Hyun;Jung, Myong-Jin;Song, Seok-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.73-79
    • /
    • 2008
  • We propose a novel metal-waveguide structure for sustaining long-range surface-plasmon-polaritons (LRSPP). The LRSPP waveguides are composed basically of two asymmetric metal layers: a very thin, finite-width metal strip on top of a metal slab with a dielectric gap in between them. Mode cut-off of LRSPPs excited on the double-metal waveguides is characterized by consistently investigating their dispersion relations and mode profiles. We also confirm experimentally the existence of low-loss, well-confined LRSPP modes by measuring far-field outputs emerging from an edge of the asymmetric double-metal waveguides. In the experiment, we have fabricated several types of SPP waveguide devices including straight lines, S-bend, and Y-branch consisting of gold strips (20 nm-thick, $5{\mu}m$-wide). Overall propagation loss of the proposed double-metal waveguides is quite comparable to that of single metal-strip waveguides, in addition the mode sizes can be tuned by increasing the core-insulator gap between the metal layers to get a higher coupling efficiency with a single-mode fiber in telecom wavelength. The proposed LRSPP waveguides may open up realization of SPP-waveguide sensors or nonlinear SPP-devices by replacing the core-insulator with a bio-fluid or a nonlinear medium.

Effect of Graft Copolymer Composition on the Compatibility of Biodegradable PCL/PCL-g-PEG Blend (PCL/PCL-g-PEG 생분해성 블렌드에서 그래프트 공중합체의 조성에 따른 상용성의 영향)

  • Cho, Kuk-Young;Lee, Ki-Seok;Park, Jung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • Blend films based on the poly($\varepsilon$-caprolactone) (PCL) and amphiphilic biodegradable polymer, poly(ethylene glycol) grafted poly($\varepsilon$-caprolactone) (PCL-g- PEG), were prepared with different blend ratios in order to develop new biomedical material. PCL was the main component in the blend. The miscibility and characteristics of the blends were investigated. The crystallization temperature of the blend shifted to high temperatures with an increase of the graft copolymer contents when the homopolymer PCL was the main component of the blend. The PEG side chain in the blend affected the crystallization rate of the PCL crystals in the blend and alternating extinction bands were observed by optical microscopy. The protein adhesion behavior of the film was influenced by the water uptake of the film.

Synthesis of IZTO(Indium Zinc Tin Oxide) particle by spray pyrolysis and post-heat treatment and characterization of deposited IZTO film

  • Lim, Seong Taek;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.734-740
    • /
    • 2016
  • The micron-sized indium zinc tin oxide (IZTO) particles were prepared by spray pyrolysis from aqueous precursor solution for indium, zinc, and tin and organic additives such as citric acid (CA) and ethylene glycol (EG) were added to aqueous precursor solution for indium, zinc, and tin. The obtained IZTO particles prepared by spray pyrolysis from the aqueous solution without organic additives had spherical and filled morphologies, whereas the IZTO particles obtained with organic additives had more hollow and porous morphologies. The micron-sized IZTO particles with organic additives were changed fully to nano-sized IZTO particles, whereas the micron-sized IZTO particles without organic additives were not changed fully to nano-sized IZTO particle after post-treatment at $700^{\circ}C$ for 2 hours and wet-ball milling for 24 hours. Surface resistances of micron-sized IZTO's before post-heat treatment and wet-ball milling were much higher than those of nano-sized IZTO's after post-heat treatment and wet-ball milling. From IZTO with composition of 80 wt. % $In_2O_3$, 10 wt. % ZnO, and 10 wt. % $SnO_2$ which showed a smallest surface resistance IZTO after post-heat treatment and wet-ball milling, thin films were deposited on glass substrates by pulsed DC magnetron sputtering, and the electrical and optical properties were investigated.

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method (열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.123-128
    • /
    • 2017
  • Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.

Preparation and Characterization of Elastomeric Solid Electrolyte Based on $PEO-EDA-LiClO_4$ Blends ($PEO-EDA-LiClO_4$ 블렌드계 탄성체 전해질의 제조와 특성)

  • Chang, Young-Wook;Joo, Hyun-Seok
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • Solid polymer electrolytes were prepared by UV irradiation of the blends consisting of poly(ethylene oxide)(PEO), epoxy diacrylate(EDA) and LiClO_4$. Conductivities of the electrolyte films were measured as a function or blend composition, salt concentration and temperature. The electrolyte having the composition of poly(ethylene oxide) (70% by weight)/epoxy diacrylate (30% by weight) with mole ratio of 10 of ethylene $oxide/Li^+$ exhibited a high ionic conductivity of $1.2{\times}10^{-5} S/cm$ at $25^{\circ}C$. This blend is transparent and shows elastomeric properties. Morphological studies by means of differential scanning calorimetry, X-ray diffraction and polarized optical microscopy indicated that the cured epoxy chains in the blends inhibit the crystallization of poly (ethylene oxide) and thereby induce the blend systems to be completely amorphous in certain compositions.