• Title/Summary/Keyword: Optical Fiber Sensors

Search Result 372, Processing Time 0.024 seconds

Fiber-optic interferometric temperature sensor using a hollow fiber (중공 광섬유를 이용한 광섬유 간섭계형 온도센서)

  • Park, Jae-Hee;Kim, Kwang-Taek
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.192-196
    • /
    • 2007
  • A fiber-optic interferometric temperature sensor is fabricated using a hollow optical fiber with 8 um air hole. This interferometric sensor for measuring temperature consists of 13 mm long hollow optical fiber whose one end is attached to the single mode fiber and the other end is cleaved. After the sensor is put in a furnace, the phase change of the sensor output signal is measured as the temperature of the furnace increases from $28^{\circ}C$ to $100^{\circ}C$. The phase change of the fiber sensor is proportional to the change of temperature and the relationship between the change of phase and temperature is approximately linear. The sensitivity of this sensor is $2.7{\;}radians/^{\circ}C$.

Characterization of gold nanoparticles on optical fiber for localized surface plasmon resonance sensor (광섬유 국소화 표면 플라즈몬 공명 센서를 위한 광섬유 표면상의 금 나노 입자 특성 분석)

  • Lee, Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2009
  • In this study, the optical properties of localized surface plasmon resonance sensor using optical fiber was analyzed as the variation of a size and surface density of gold nano particles on the etched optical fiber surface. It is shown that a size and surface density of gold nano particles on optical fiber surface are controlled by $Na_3$ citrate quantity and pH of gold colloid solution. To measure the sensitivity, peak wavelength of absorbance spectrum was detected as the reflective index of the solution. The sensor sensitivity is linearly dependent on the size and surface densities of gold nano particles from the results of optical experiments.

Research on the Mechanical Strength of Fiber Bragg Grating Sensor Adapting to Railway Structure (철도 구조물 적용을 위한 FBG 센서의 기계적 강도에 관한 연구)

  • Yoon, Hyuk-Jin;Kim, Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2009
  • In order to apply FBG(Fiber Bragg Grating) sensor as one of reliable sensors in the commercial railway structure, the reliability of FBG sensor in the mechanical strength viewpoint have to be confirmed and the maximum strain should surpass the fracture strain of the host structure to measure the measurands until the host structures fail. In this paper, several factors that influence the mechanical failure strength of fiber Bragg grating sensors were analyzed. A set-up for dynamic tensile testing of optical glass fibers with fiber Bragg gratings was made. To increase the FBG failure strength, techniques relying on the H2 loading treatment and stripping methods were established and testified as a result of the tensile strength test of optical fibers.

Fiber Optic Smart Monitoring of Concrete Beam Retrofitted by Carbon and Glass Sheets

  • Kim Ki-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.486-489
    • /
    • 2004
  • In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.

  • PDF

Compensation of Electric Field Interference for Fiber-optic Voltage Measurement System

  • Cho, Jae-Kyong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.84-88
    • /
    • 2008
  • In this paper, we analyze the errors associated with electric field interference for fiber-optic voltage sensors working in a three-phase electric system. For many practical conductor arrangements, the electric filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of 1 %.

Applications of Fiber Bragg Grating Sensor Technology (FBG 센서 기술의 응용 사례)

  • Kang Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.3-9
    • /
    • 2006
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. In this paper, we fabricated several filament wound pressure tanks with embedded FBG sensors and conducted some kinds of experiments such as an impact test, a bending test, and a thermal cycling test. From the experimental results, it was successfully demonstrated that FBG sensors are very appropriate to composite structures fabricated by filament winding process even though they are embedded into composites by multiplexing.

  • PDF

Development of Non-Contact Fiber Jumper Cord and Evaluation of Light Transmission Performance (비접촉식 광 점퍼 코드 개발 및 광 전송 성능 평가)

  • Kim, Heonyoung;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.399-405
    • /
    • 2016
  • Recently, fiber optic sensors, which have many advantages are being applied in various fields by replacing conventional electric sensors. To transmit the light signals between an interrogator and a sensor head, optical components such as an optical adaptor and optical jumper cords are generally used. When signals are transmitted using an adaptor, the end surface of each jumper cord is faced together. If alien substances exist on the core surface of an optical fiber, those can cause light transmission loss and signal disappearance. For this reason, non-contact fiber jumper cords are developed to overcome the problems that require continual attention. The light transmission performance of non-contact fiber jumper cords are also evaluated. From the test results, conventional fiber jumper cords are unable to transmit the signals over 2 mm cavity between the ends of both cords. Otherwise, non-contact fiber jumper cords can transmit the signals with stability up to the cavity of 7 mm though they have more transmission loss than the conventional ones. Consequently, non-contact fiber jumper cords that have better signal stability than conventional ones in environments are highly recommended in field applications, especially if they play a role as a cable for signal transmission between fiber optic sensors.

Displace Measurement of the Top of Bridge Pier Using Long gauge Fiber Optic Sensor (긴 게이지길이 광섬유 FBG센서를 이용한 교각상부 거동 혹정)

  • Ki Ki-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.71-76
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well, suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

  • PDF

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.