• Title/Summary/Keyword: Optical Fiber Link

Search Result 147, Processing Time 0.02 seconds

A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link

  • Park, Mun-Su;Hwang, Jun-Am
    • ETRI Journal
    • /
    • v.9 no.2
    • /
    • pp.24-35
    • /
    • 1987
  • A Design and Fabrication of 565 Mbit/s Optical Fiber Transmission Link We calculated the transfer functions of optical channel components and formulated the optimum transfer function of optical receiver for optical transmission to show a design rule of fiber optical link for digital transmission. And we evaluated various causes of sensitivity degradation to determine the receiver specification. Also we fabricated and demonstrated a 565Mbit/s single mode fiber optic link, 27km, to show the practicality of designed fiber optic link. The output power of the transmitter was above -3dBm, and the sensitivity of the optical receiver was -37.8dBm which is the same value we expected. Also the dynamic range was more than 25dB.

  • PDF

Analysis of Fiber-optic Link Budget for Optically fed Wireless Communication

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.35-38
    • /
    • 2003
  • Analyses of performance of wireless broadband communication systems employing fiber-optic link have presented. We have analyzed CNR penalty to evaluate system performance by taking into account, radio link considering rainfall attenuation, and optical link considering several carrier-to-noise ratio versus the optical modulation index.

Design and Construction of Fiber Optical Link Application System for Multi-Video Audio Data Transmission (광MVAD(Multi-Video Audio Data)쌍방향 다채널링크시스템 설계)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2691-2695
    • /
    • 2009
  • Nowadays Fiber optical communication systems have limitless bandwidth and can be used for transmitting various multimedia data with in real time. It is necessary to construct integrated service systems that can be used in our society whole to communicate multimedia data such as text, image, audio and video data in fiber optic communication systems. In this paper, we have designed and constructed the fiber optical link application system for multi-video/audio data transmission using only one core optical cable upgrading previous fiber optical communication systems based on WDM (Wavelength Division Multiplexer). Using the proposed fiber optical link application system enables us to managing fiber optical communication systems with only one core optical cable using WDM (Wavelength Division Multiplexer) and DEWDM/Wavelength splitter.

Decaying/Expanding Distribution of RDPS in the Half Section of a Dispersion-Managed Optical Link Combined with Mid-Span Spectral Inversion

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.227-233
    • /
    • 2019
  • In long-haul optical communication system consisting of standard single-mode fiber spans and fiber amplifiers, such as the erbium-doped fiber amplifier, performance is deteriorated by signal distortion due to chromatic dispersion and nonlinearity of the fiber. A combination of dispersion management and optical phase conjugation is an effective technique to compensate for the distortion. In an optical link configured by this combination, a dispersion map mainly affects the compensation of the distorted optical signals. This paper proposes new dispersion maps configured by the decaying or expanding distribution of residual dispersion per span (RDPS) in a dispersion-managed link combined with a midway optical phase conjugator. The effect of the proposed dispersion maps on the compensation for distorted 24 channel × 40 Gbps wavelength-division multiplexed signals was assessed through numerical simulation. It was confirmed that all the proposed dispersion maps are most appropriate for the compensation and, furthermore, for the flexibility of link configuration than conventional links.

Dispersion-Managed Optical Transmission Link Adding of Non-Midway OPC (Non-Midway OPC를 추가한 분산 제어 광전송 링크)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.408-414
    • /
    • 2020
  • The method of overcoming the limitation of optical phase conjugator applied into optical long-haul link for transmitting high capacity wavelength division multiplexed (WDM) channels was investigated. The configuration of optical link was based on dispersion-managed link, in which dispersion compensating fiber inserted into each fiber span with single mode fiber, and optical phase conjugator was added into suitable location of link. The maximum number of fiber spans as a function of the launch power of WDM channels in optical link with optical phase conjugator placed at the proposed location was induced and compared for analyzing the compensation performance of the distorted WDM channels. It was confirmed that the more optical phase conjugator depart from the midway of total transmission length, the less the distorted WDM channels was compensated, however, it was also confirmed that the degradation of compensation can be overcome by the suitable value of residual dispersion per span and by the reasonable choice of fiber span controlling total dispersion accumulated in overall transmission link.

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.

Compensation of the Distorted WDM Channels in Ultra-long Transmission Link of 80 km × 56 Spans (80 km × 56 spans의 초장거리 전송 링크에서 왜곡된 WDM 채널의 보상)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.251-257
    • /
    • 2019
  • The configuration of ultra-long optical transmission link with dispersion management and optical phase conjugation is proposed. The whole transmission link consist of 80 km (single mode fiber span) ${\times}$ 56 fiber spans. The artificial distribution of single mode fibers' lengths and residual dispersions in fiber spans, which are gradually increased/decreased as the span number is increased, is adopted to compensate for the distorted wavelength division multiplexed channels. Since the compensation effect through the artificial distribution in the previous researches is expected to decrease as the number of fiber spans are increased, three-time repetition of the artificial distribution patterns at intervals of 9 fiber spans applied into the link with dispersion management and optical phase conjugation is proposed. From the simulation results, it is confirmed that the compensation in the link configured by the special distribution pattern among 4 proposed patterns is slightly improved than the link configured by the conventional method, which is designed by the repeat-less distribution pattern.

Dispersion-Managed Links Formed of SMFs and DCFs with Irregular Dispersion Coefficients and Span Lengths

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2018
  • The various techniques to compensate for the signal distortion due to the group velocity dispersion (GVD) and nonlinear Kerr effects of optical fibers in the optical links have been proposed in the literature. We propose a flexible dispersion-managed link configuration consisted of single-mode and dispersion-compensating fibers with irregular dispersion coefficients over all fiber spans, and an optical phase conjugator added midway along the optical links. By distributing the lengths of the single mode fibers, we achieve a flexible optical link. The simultaneous ascending and descending distribution of the single-mode fiber lengths before and after the optical phase conjugator, respectively, best compensates the distorted wavelength division multiplexed signals in the optical link with non-fixed coefficients. Our result is consistent with those of our previous work on fixed coefficients. Therefore, to improve the compensation at any magnitude of dispersion coefficient, we must artificially distribute the lengths of the single-mode fibers into a dispersion-managed link.

Quantifying Optical Link Loss of Fiber-to-the-Home Infrastructure

  • Karan Bahadur Bhandari;Bhanu Shrestha;Surendra Shrestha
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.48-58
    • /
    • 2024
  • Fiber to the Home (FTTH) technology is among the most advanced broadband services, delivering voice, data, and television through a single optical fiber directly to customer premises, ensuring high-speed and reliable connectivity. The study conducted on Nepal Telecom's FTTH networks involved direct measurements from the optical line terminal to the fiber access point and optical network unit, providing detailed insights into network performance. Using the OptiSystem software, the analysis revealed a link loss of 24.99 dB, a Q-factor of 12.98, and a minimum Bit Error Rate (BER) of 7.31E-39, all within standard limits, which underscores the robustness of the network. The study also identified that the highest contributors to signal loss were connector loss, fiber attenuation, and fusion splices, emphasizing the importance of minimizing these factors to maintain optimal network performance. Overall, these findings highlight the critical aspects of FTTH network design and maintenance, ensuring that service providers can deliver high-quality broadband services to customers.

Mid-span Spectral Inversion System Applied with Dispersion Management with Different RDPS Determinations for Half Transmission Link (반 전송 링크의 RDPS 결정 방식이 다른 분산 제어가 적용된 Mid-span Spectral Inversion 시스템)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.331-337
    • /
    • 2022
  • The length of optical fiber in dispersion-managed link combined with optical phase conjugation to compensate for signal distortion caused by chromatic dispersion and nonlinear Kerr effect is a major factor determining the compensation effectiveness. The dispersion-managed link consists of several fiber spans in which standard single mode fiber and dispersion compensating fiber are arranged. In this paper, the compensation effect in the link that changes residual dispersion per span only by adjusting the length of one type of optical fiber, which is different in the first half link and the second half link with respect to optical phase conjugator (OPC), has been investigated. It was confirmed that the best compensation for 960 Gb/s wavelength division multiplexed signal could be obtained in the dispersion-managed link, in which the cumulative dispersion profile is symmetric around the OPC, and the cumulative dispersion amount is all positive in the first half, and all the cumulative dispersion amount is distributed negatively in the second half.