• 제목/요약/키워드: Optical Current Sensor

검색결과 242건 처리시간 0.026초

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

Current-induced Phase Demodulation Using a PWM Sampling for a Fiber-optic CT

  • Park, Hyoung-Jun;Lee, June-Ho;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Optical Society of Korea
    • /
    • 제14권3호
    • /
    • pp.240-244
    • /
    • 2010
  • In this work, we used PWM sampling for demodulation of a fiber-optic interferometric current transformer. The interference signal from a fiber-optic CT is sampled with PWM triggers that produce a 90-degree phase difference between two consecutively sampled signals. The current-induced phase is extracted by applying an arctangent demodulation and a phase unwrapping algorithm to the sampled signals. From experiments using the proposed demodulation, we obtained phase measurement accuracy and a linearity error, in AC current measurements, of ~2.35 mrad and 0.18%, respectively. The accuracy of the proposed method was compared with that of a lock-in amplifier demodulation, which showed only 0.36% difference. To compare the birefringence effects of different fiber-optic sensor coils, a flint glass fiber and a standard single-mode fiber were used under the same conditions. The flint glass fiber coil with a Faraday rotator mirror showed the best performance. Because of the simple hardware structure and signal processing, the proposed demodulation would be suitable for low-cost over-current monitoring in high voltage power systems.

자기광학효과를 이용한 광전류센서에 관한 연구 (The Study of the Optical Current Sensor Using Magneto-Optic Effects)

  • 전재일;이정수;송시준;정철우;박원주;이광식;김정배;김민수
    • 조명전기설비학회논문지
    • /
    • 제17권6호
    • /
    • pp.47-53
    • /
    • 2003
  • 본 논문은 자기광학효과에 의한 초고압 전력설비에서의 광전류 센서의 특성에 대한 기초 연구를 하였다. 광원은 He-Ne laser(633[nm])를 사용하고, 수신부는 PIN-Photodiode를 사용하였다. Faraday 효과에 의한 편광면의 회전각은 도체에 인가된 전류에 비례하므로 광섬유를 도체 주위에 감아서 센싱부를 구성하였다. 광섬유센서를 통과한 광신호를 입력편광에 대하여 $\theta$방향으로 정렬된 검광자를 통과시켜 그 회 각을 분석하여 l00[A] 에서 1000[A] 까지의 광 CT 동작특성과 60[Hz] 교류전류측정을 하였다. 측정 결과에서는 전류에 따른 출력 신호가 선형적으로 증가함을 알 수 있었고 파이버의 권수에 따른 출력차이를 통해 파이버의 권수가 많을수록 강도가 커진다는 것을 알 수 있었다. 또한 자장과 감긴 파이버 사이의 매질에 따라 출력의 차이뿐만 아니라 선형성까지도 차이가 난다는 것을 알 수 있었다. 기준값과 광전류 센서의 출력 강도와의 오차율을 구했을 때 약 $\pm$7% 이하의 오차가 나왔고 이는 매질과 권수에 따라 그 오차율이 점점 나아질 수 있다는 것을 확인 시켜주었다.

Faraday 효과를 이용한 광섬유 전류센서에 관한 연구 (The Study of the Optical Fiber Current Sensor Using Faraday Effect)

  • 이정수;송시준;전재일;박원주;이광식;김정배;송원표
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2002년도 학술대회논문집
    • /
    • pp.229-232
    • /
    • 2002
  • In this paper, we described the laboratory layout of the optical CT in connection with the measurement of large current for the GIS. The aim of this study is the development and application of optical CT based on Faraday effect. It was used He-Ne laser for light source (633nm) and was used PIN-Photodiode for light receiver. The laser source passes through optical fiber in single mode. We used the polarizer to polarize the light source and the beam splitter to divide the output light, and the optical fiber is connected for the measuring the angle polarized in the magnetic field.

  • PDF

광센서를 이용한 실시간 중환자 요량감시 장치 (Real-time urine monitoring system for intensive care patient using optical sensor)

  • 김종명;이진영;홍주현;임승운;차은종;이태수
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.81-85
    • /
    • 2008
  • This paper addressed real-time urine monitoring device for intensive care patients. The device was developed to detect and count each urine drop using optical sensor and calculate the current urine output volume and its hourly rate. In experiment, the water volume scale of drainage bottle was observed and compared with the count of the device so that the volume of each drop was found to vary with the dropping rate per minute. From this measurement, the relationship equation was derived to estimate the total water volume from the drop rate (correlation coefficient : r= 0.99). The developed device could be applied to count patient's urine drop successfully. Therefore, this device can be used to monitor intensive care patient's urine status in real-time.

BER Analysis of Coherent Free Space Optical Communication Systems with Holographic Modal Wavefront Sensor

  • Liu, Wei;Yao, Kainan;Huang, Danian;Cao, Jingtai;Wang, Liang;Gu, Haijun
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2017
  • Degradation of bit-error-rate (BER), caused by atmospheric turbulence, seriously hinders the performance of coherent Free Space Optical (FSO) communication systems. An adaptive optics system proves to be effective in suppressing the atmospheric turbulence. The holographic modal wavefront sensor (HMWFS) proposed in our previous work, noted for its fast detecting rates and insensitivity to beam scintillation, is applied to the coherent FSO communication systems. In this paper, based on our previous work, we first introduce the principle of the HMWFS in brief and give the BER of the coherent FSO with homodyne detection in theory, and then analyze the improvement of BER for a coherent FSO system based on our previous simulation works. The results show that the wavefront sensor we propose is better for weak atmospheric turbulence. The most obvious advantages of HMWFS are fast detecting rates and insensitivity to beam scintillation.

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.

PSD 센서를 이용한 모션캡쳐센서의 정밀도 향상을 위한 보정에 관한 연구 (A Study on the Sensor Calibration of Motion Capture System using PSD Sensor to Improve the Accuracy)

  • 최훈일;조용준;유영기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.583-585
    • /
    • 2004
  • In this paper we will deal with a calibration method for low cost motion capture system using psd(position sensitive detection) optical sensor. To measure the incident direction of the light from LED emitted marker, the PSD is used the output current ratio on the electrode of PSD is proportional with the incident position of the light focused by lens. In order to defect the direction of the light, the current output is converted into digital voltage value by opamp circuits peak detector and AD converter with the digital value the incident position is measured. Unfortunately, due to the non-linearly problem of the circuit poor position accuracy is shown. To overcome such problems, we compensated the non-linearly by using least-square fitting method. After compensated the non-linearly in the circuit, the system showed more enhanced position accuracy.

  • PDF

Faraday Rotator Glass 광섬유 전류센서 (Fiber-Optic Current Sensor Using a Faraday Rotator Glass Fiber Sensor Coil)

  • 김기혁;송민호
    • 조명전기설비학회논문지
    • /
    • 제18권4호
    • /
    • pp.28-33
    • /
    • 2004
  • 전력계통 시스템의 대전류 측정용으로 편광 분석형 광섬유 전류센서를 제작하였다. 선형복굴절에 의한 출력의 왜곡을 최소화하기 위하여 FRG 광섬유를 센서코일로 사용하였으며, 다양한 광원을 이용하여 광원에 따른 출력 노이즈 비교분석을 수행하였다. FRG광섬유 센서코일에 기계적 변형을 인가한 경우 $\pm$0.4(%) 이내의 출력안정도를 얻었으며, ASE 광폭 광원을 사용할 경우 단일모드 레이저에 비해 23(㏈) 정도의 노이즈 감쇄 효과를 얻을 수 있음을 확인하였다.