• Title/Summary/Keyword: Optical Coherent

Search Result 219, Processing Time 0.026 seconds

Measurement of POF Refractive Index Profile by using Phase-Shifting Moire Deflectometry (위상천이 모아레 간섭방법을 이용한 POF의 굴절률 분포 측정)

  • 우세윤;이현호;박승한
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.274-275
    • /
    • 2003
  • 광통신 분야의 연구 중 근거리 광통신 분야에 적용하기 위한 Plastic Optical Fiber(POF)에 관한 연구와 개발이 활발히 이루어지고 있다. POF의 광전송 특성을 결정짓는 요소 중 가장 중요한 특성이 바로 굴절률 분포이다. 이에 따라 그동안 다양한 형태의 POF 굴절률 측정 방법이 연구되어 왔다. 기존 Glass Optical Fiber의 굴절률 분포 측정 방법 중 가장 일반적이고 효과적인 방법 중 하나는 coherent 빛의 간섭을 이용한 transverse interferograms을 분석하는 방법으로 Fizeau 간섭계와 같은 간섭계를 이용하여 위상변화를 측정하고 측정한 위상을 tomography적인 해석방법을 통해 굴절률 분포를 계산하는 방법이다. (중략)

  • PDF

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Photorefractive two-wave coupling properties of time-modulated optical signal in Cu-KNSBN crystal and its applications (Cu-KNSBN 결정에서 시변조된 광신호의 광굴절 2광파결합 특성 및 응용)

  • 소지영;이권연
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.2
    • /
    • pp.104-110
    • /
    • 1998
  • The energy transfer between two incident beams in a photorefractive Cu-doped(0.04 wt. %) ${(K_{0.5}Na_{0.5})}_{0.2}{(Sr_{0.61}Ba_{0.39})}_{0.9}Nb_2O_6$ crystal is investigated at 632.8 nm laser wavelength. In addition, the coherent two-wave coupling properties of a photoinduced refractive-index grating in the presence of amplitude modulation on the signal beam or reference beam are also experimentally investigated. Some preliminary exprimental results are presented for use as a dynamic photorefracitive combiners and pulse shaping elements in coherent optical communication systems and in optical signal processing.

  • PDF

Efficient Fault Location Detecting Mechanism for Optical Submarine Cable (해저광케이블 고장지점 탐지기법)

  • Park, Hong-Tae;Yoo, Jae-Duck;Yoon, Suk-Min;Jo, Gi-Rayng;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • The optical submarine cable has a long distance cable and the repeater for optical amplification compared to territorial optical cable so conventional OTDR utilization for the optical submarine cable is limited. in case the optical core in the optical submarine cable system cut, by using Coherent OTDR that utilize OTDR path in repeater the cable fault point can be detected and in case the faulty of the copper tube in the cable that provide power for the repeater to amplify optical signal, the ways using the current/voltage characteristic, the capacitance per Km and so on is required. this report suggest efficient fault location detecting mechanism by categorized cable fault type.

  • PDF

Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa;Smith, Nicholas Isaac
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.530-535
    • /
    • 2008
  • Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

Coherent Control of Absorption and Polarization Decay in GaAs Quantum Wells : Time and Spectral Domain Studies (GaAs 양자우물에서 흡수와 편광소멸의 결맞는 조절 : 시간과 에너지 영역 연구)

  • 김대식;이대수;이기주;홍성철
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.18-19
    • /
    • 2000
  • Recently, coherent control of exciton populations has been demonstrated through terahertz, reflection, and four-wave-mixing experiments. However, the most direct probe of exciton population control is the absorption, which has been lacking in previous studies. In this report, we probe the time evolution of exciton population directly through a transmission experiment. In particular, using upconversion technique with both narrow (spectrally broad) and long (spectrally narrow) pulses, we can obtain both the temporal and the spectral information. The main thrust of our report is that when phase controlled, the second pulse can be either greatly enhanced or completely destroyed by gaining energy from exciton (thus destroying the exciton population) or giving all of its energy to the system (thus greatly increasing the exciton population), respectively. (omitted)

  • PDF

Measurement of Brillouin Backscattering for Distributed Temperature Sensor Applications

  • Kim, Su-Hwan;Kwon, Hyung-Woo;Kwon, Hyun-Ho;Jang, Hang-Seok;Kim, Jee-Hyun;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • We present measurements of the Brillouin frequency shift in an optical fiber using a 1550 nm distributed feedback laser diode(DFB-LD) as a light source. By modulating the probe light with an electro-optic modulator, we confirm the stimulated Brillouin gain spectrum(BGS) and spontaneous BGS using the coherent detection method. We also confirm the applicability of the technique to distributed temperature sensors that measure the change in Brillouin frequency shift due to temperature variations.

The Phase-sensitivity of a Mach-Zehnder Interferometer for Coherent Light

  • Shin, Jong-Tae;Kim, Heo-Noh;Park, Goo-Dong;Kim, Tae-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • We have studied the sensitivity of four different phase shift measurement schemes with a Mach-Zehnder interferometer. The input light is considered to be in a coherent state and the detectors are assumed to be ideal with the quantum efficiency of unity. It is shown by direct calculation of the operators corresponding to the measurement schemes that the uncertainty of the phase-shift measurement is limited to the classical one $\frac{1}{\sqrt{m}}$(m is the average number of the photons in the input state) regardless of the phase-shift measurement schemes.

Cost Effective Silica-Based 100 G DP-QPSK Coherent Receiver

  • Lee, Seo-Young;Han, Young-Tak;Kim, Jong-Hoi;Joung, Hyun-Do;Choe, Joong-Seon;Youn, Chun-Ju;Ko, Young-Ho;Kwon, Yong-Hwan
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.981-987
    • /
    • 2016
  • We present a cost-effective dual polarization quadrature phase-shift coherent receiver module using a silica planar lightwave circuit (PLC) hybrid assembly. Two polarization beam splitters and two $90^{\circ}$ optical hybrids are monolithically integrated in one silica PLC chip with an index contrast of $2%-{\Delta}$. Two four-channel spot-size converter integrated waveguide-photodetector (PD) arrays are bonded on PD carriers for transverse-electric/transverse-magnetic polarization, and butt-coupled to a polished facet of the PLC using a simple chip-to-chip bonding method. Instead of a ceramic sub-mount, a low-cost printed circuit board is applied in the module. A stepped CuW block is used to dissipate the heat generated from trans-impedance amplifiers and to vertically align RF transmission lines. The fabricated coherent receiver shows a 3-dB bandwidth of 26 GHz and a common mode rejection ratio of 16 dB at 22 GHz for a local oscillator optical input. A bit error rate of $8.3{\times}10^{-11}$ is achieved at a 112-Gbps back-to-back transmission with off-line digital signal processing.

Study of Monitoring Parameters for Coherent Beam Combination through Fourier-domain Analysis of the Speckle Image (스펙클 이미지의 푸리에 공간 분석을 통한 결맞음 빔결합 상태 모니터링 변수 도출)

  • Park, Jaedeok;Choe, Yunjin;Yeom, Dong-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.268-273
    • /
    • 2020
  • We analyze the characteristics of the coherent beam combination of lasers by monitoring the speckle pattern of the beam reflected from a scattering medium. Three collimated laser sources with high coherence are focused on a scattering target using a lens, and we then examine the speckle pattern of the returned beam in the Fourier domain. We observe that the size of the speckle pattern changes, depending on the focused-beam size or degree of spatial overlap of the three beams. Furthermore, through Fourier-domain analysis of the speckle pattern we obtain the monitoring variable to qualify the efficiency of the coherent beam combination.